WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаПсихологія → Розвиток математичного мислення студентів фізико-математичних факультетів - Реферат

Розвиток математичного мислення студентів фізико-математичних факультетів - Реферат


Реферат на тему:
Розвиток математичного мислення студентів фізико-математичних факультетів
?
Зміст
Вступ
1. Математичне мислення та його ознаки
2. Задача як засіб інтелектуального розвитку студентів
3. Психологічні принципи формування математичного мислення з використанням навчальних задач
Висновки
Література
Вступ
Одним із завдань навчання математиці у вищому навчальному закладі є забезпечення рівня математичної культури, необхідного для повноцінної участі студентів у майбутній професійній діяльності. Математика є унікальним засобом формування не тільки освітнього, а й розвиваючого та інтелектуального потенціалу особистості.
Зокрема, перед викладачем математичних дисциплін постає проблема розвитку математичного мислення майбутніх фахівців, тобто теоретичного мислення, побудованого на об'єктах математики. Це є також важливим фактором успішного оволодіння студентами математичною наукою.
У зв'язку з цим постають проблеми пошуку, визначення умов ефективного розвитку математичного мислення студентів.
Одним із засобів розвитку інтелектуальної сфери студентів є задачі. Саме розв'язуванню задач приділяється значна частина навчального часу при викладанні математичних дисциплін у ВНЗ. При цьому необхідно визначити сутність математичного мислення як психічного процесу, встановити взаємозв'язок між навчанням студентів розв'язувати математичні задачі та розвитком мислення. Це допоможе знайти такі методи і прийоми, організаційні форми навчання (серед яких можуть бути як традиційні, так і відносно нові), за яких в найбільшій мірі проявиться розвиваюча функція задач.
1. Математичне мислення та його ознаки
Мислення - це соціальне обумовлений, нерозривно пов'язаний з мовою психічний процес пошуків та відкриття істотно нового, процес опосередкованого та узагальненого відображення дійсності у ході її аналізу та синтезу. Мислення виникає на основі практичної діяльності з чуттєвого пізнання і далеко виходить за його межі [11].
Процес мислення в навчальній діяльності - це процес пізнання. Він будується за відомою у психології теорією пізнання, у якій умовно можна виділити наступні етапи:
сприймання (на основі чуттєвих органів);
осмислення;
узагальнення;
практичні дії.
На основі найпростіших методів пізнання - словесних, наглядних, практичних - відбувається процес навчального пізнання.
Якщо необхідно цей процес ускладнити, наприклад, процес сприймання та осмислення будується на більш складній методиці проблемного (самостійного) вивчення, то в цьому випадку розумова діяльність максимально орієнтується на заключний етап - абстрактне пізнання (узагальнення).
Як правило, коли кажуть про розвиток мислення у процесі навчання математиці, то мають на увазі розвиток математичного мислення. Звичайно, це вірно: у процесі навчання математиці слід у першу чергу турбуватися не взагалі про розвиток мислення, а саме про розвиток математичного мислення [9].
А.Я. Хінчин, відомий математик, що глибоко цікавився проблемами навчання математиці, вказав на чотири характерні ознаки математичного мислення:
1. "доведенное до предела доминирование логической схемы рассуждения..."
2. "...лаконизм, сознательное стремление всегда находить кратчайший, ведущий к данной цели логический путь, беспощадное отбрасывание всего, что не абсолютно необходимо для безупречной аргументации".
3. "…четкая расчлененность хода аргументации".
4. Скурпулезная точность символики [24, с. 38].
Вивчення математичних дисциплін у ВНЗ являє собою складний процес, основними цільовими компонентами якого є:
- засвоєння студентами системи математичних знань;
- оволодіння студентами певними математичними вміннями та навичками;
- розвиток мислення студентів.
Ще не так давно вважалось, що успішна реалізація першої та другої із цих цілей математичної освіти автоматично приводить до успішної реалізації третьої цілі, тобто вважалось, що розвиток математичного мислення відбувається у процесі навчання математиці спонтанно. Це вірно, але лише в деякій мірі.
Результати досліджень багатьох вітчизняних та зарубіжних психологів та дидактів показали, що математичне мислення є не лише одним із найважливіших компонентів процесу пізнавальної діяльності, але й таким компонентом, без цілеспрямованого розвитку якого неможливо досягнути ефективних результатів оволодіння математичною наукою.
Будемо розуміти під математичним мисленням, по-перше, ту форму, якою є діалектичне мислення у процесі пізнання людиною конкретної науки математики або у процесі застосування математики в інших науках, техніці, господарстві і т. д.; по-друге, ту специфіку, яка обумовлена самою природою математичної науки, методів, що застосовуються для пізнання явищ реальної дійсності, а також тими загальними прийомами мислення, які при цьому застосовуються.
Математичне мислення має свої специфічні риси та особливості, вони обумовлені специфікою об'єктів, що вивчаються, а також специфікою методів їхнього вивчення.
Існує загальна думка про активну роботу у процесі математичного мислення певних якостей мислення (гнучкість, просторова уява, вміння знаходити головне і т. д.), які в рівній мірі можуть бути співвіднесені як до математичного мислення, так і до мислення фізичного, технічного і т. д., тобто до наукового мислення взагалі.
До числа якостей наукового мислення відноситься гнучкість (не шаблонність), оригінальність, глибина, цілеспрямованість, раціональність, широта (узагальненість), активність, критичність, доведеність мислення, організованість пам'яті, чіткість та лаконічність мовлення та запису.
Вважатимемо для прояву гнучкості мислення вміння цілеспрямовано змінювати способи розв'язування пізнавальної проблеми, легкість переходу від одного шляху вирішення проблеми до іншого, вміння виходити за межі звичного способу дій, знаходити нові способи вирішення проблем при зміні умов, що даються.
Найвищий рівень розвитку не шаблонного мислення проявляється в оригінальності мислення, яка у навчанні математиці, як правило, виступає у незвичності способів розв'язування відомих студентам задач.
Глибина мислення характеризується вмінням проникати у сутність кожного з фактів, що вивчаються, у їхньому взаємозв'язку з іншими фактами; виявляти приховані особливості у матеріалі.
Цілеспрямованість мислення характеризується намаганням здійснювати розумний вибір дії при вирішенні певної проблеми, постійно орієнтуючись на поставлену цією проблемою ціль, а також у намаганні відшукати найбільш короткі шляхи її досягнення.
Цілеспрямованість мислення сприяє виявленню такої якості, як раціональність мислення, що характеризується схильністю до економії часу та коштів для вирішення поставленої проблеми, намагання відшукати простий у даному випадку розв'язок задачі, використовувати у ході розв'язування схеми, символіку та умовні позначення.
Раціональність мислення часто виявляється принаявності широти мислення, що характеризується здатністю до формування узагальнених способів дій, що мають широкий діапазон переносу і застосування до частинних, не типових випадків; вміння охоплювати проблему в цілому, не упускаючи при цьому деталей, що мають значення;
Loading...

 
 

Цікаве