WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Другий закон термодинаміки та його значення - Реферат

Другий закон термодинаміки та його значення - Реферат

не повернеться, тому що поширюється в безмежному просторі. Тут ми маємо справу з необмеженою диссипацією (розсіюванням) хвиль і частинок, що являє собою ще один тип необоротної тимчасової асиметрії. Виходить, утворення структур, що розгалуджуються, і необоротна асиметрія безкінечного хвилястого прямування роблять необхідним врахувати великомасштабні властивості Всесвіту.
г) Третій початок термодинаміки (теорема Нернста) : ентропія фізичної системи під час наближення температури до абсолютного нуля не залежить від параметрів системи і залишається незмінною. Інші формулювання теореми: при наближенні температури до абсолютного нуля всі зміни стану системи не змінюють її ентропії; за допомогою кінцевої послідовності термодинамічних процесів не можна досягти температури,що дорівнює абсолютному нулю. М.Планк доповнив теорему гіпотезою, відповідно до якої ентропія всіх тіл при абсолютному нулі температури дорівнює нулю. З теореми випливають важливі наслідки про властивості речовин при температурах, близьких доабсолютного нуля: набувають нульового значення питомі теплоємності при сталому об'ємі і тиску. Крім того, із теореми випливає недосяжність абсолютного нуля температури при кінцевому стані термодинамічних процесів.
Якщо перший початок термодинаміки підтверджує, що теплота є форма енергії, що вимірюється механічною мірою, і неможливість вічного двигуна першого роду, то другий початок термодинаміки заперечує створення вічного двигуна другого роду. Перший початок увів функцію стану - енергію, другий початок увів функцію стану - ентропію. Якщо енергія закритої системи залишається незмінною, то ентропія цієї системи при кожній зміні збільшується - зменшення ентропії суперечить законам природи. Співіснування таких незалежних один від одного функцій стану, як енергія й ентропія,що дає можливість робити висновок про теплову поведінку тіл на основі математичного аналізу. Оскільки обидві функції обчислювалися лише стосовно довільно обраного початкового стану то повністю визначити енергію й ентропію не є можливість зробити. Третій початок термодинаміки дав можливість усунути цю проблему. Важливе значення для розвитку термодинаміки мали встановлені Ж.Л.Гей-Люсаком закони - закон теплового розширення і закон об'ємних відношень. Б.Клапейрон установив залежність між фізичними величинами, що визначають стан ідеального газу (тиском, об'ємом і температурою),яку узагальнив Д.И.Менделєєвим.
Таким чином, концепції класичної термодинаміки описують стани теплової рівноваги і рівноважні (які протікають нескінченно повільно, тому час в основні рівняння не входять) процеси. Термодинаміка нерівновагових процесів виникає пізніше - у 30-х рр. ХХ сторіччя. У ній стан системи визначається локальні термодинамічні параметри, що розглядаються як функції координат і часу.
Розділ 2
Теплові двигуни і холодильники
Неважко одержати теплову енергію за рахунок здійснення роботи, наприклад досить сильно потерти одну долоню об іншу, цієї ж мети можна досягти в будь-якому процесі за участю тертя. Однак одержати механічну роботу за рахунок теплової енергії значно складнішне, і практично корисний пристрій для цієї мети було винайдено лише близько 1700р. на основі парової машини.
Мал.1 Мал.2
Основна ідея, що лежить в основі будь-якого теплового двигуна, полягає в тому, що механічна енергія може бути отримана за рахунок теплової, тільки якщо дати можливість теплоті переходити з області з високою температурою в область з низькою температурою, причому в процесі цього переходу частина теплоти може бути перетворена в механічну роботу. Висока Тн і низька TL температури називаються робочими температурами двигуна, і надалі для спрощення ми будемо вважати, що ці температури забезпечуються двома термостатами, що знаходяться при постійних температурах Тн і TL. Нас будуть цікавити тільки теплові двигуни, що роблять періодичні робочі цикли (тобто вся система періодично повертається у вихідний стан) і в такий спосіб можуть діяти постійно.
Сучасні парові двигуни підрозділяються на два основних типи. У двигунах так званого оборотного типу нагріта пара проходить через впускний клапан і потім розширюється в просторі під поршнем, змушуючи його рухатися; після того як поршень повертається у своє вихідне положення, він витісняє гази через випускний клапан. У паровій турбіні відбувається, власне кажучи, те ж саме; розходження лише в тому, що поршень який рухається обертально-поступально замінюється турбіною, яка обертається і нагадує колесо греблі з численними лопастями. За допомогою парових турбін1* виробляється велика частина одержуваної в даний час електроенергії. Речовина, що нагрівається і охолоджується (у даному випадку пара), називається робочим тілом. У паровому двигуні висока температура досягається за рахунок спалювання вугілля, чи нафти, іншого палива; при цьому нагрівається пара. У двигуні внутрішнього згоряння висока температура досягається за рахунок згоряння робочої суміші (бензину з повітрям) всередині циліндру двигуна; запалення суміші відбувається за допомогою іскри.
З'ясуємо тепер, чому для практичної роботи двигуна необхідна різниця температур; розглянемо це на прикладі парового двигуна. Нехай у паровому двигуні оборотнього типу, не було б ні конденсатора, ні насоса, щоб пара мала однакову температуру у всій системі. Це означало б, що тиск пари при його випуску був би таким же, як і під час впуску. Тоді робота, яку виконала пара над поршнем при своєму розширенні після впуску, дорівнювала б роботі, що зробив поршень над парою при його випуску; у кінцевому рахунку не було б зроблено ніякої результуючої роботи. У реальному двигуні газ, що випускається, охолоджується до більш низької температури і конденсується, так що тиск при випуску менший, ніж тиск при впуску. Тоді робота, що повинен виконати поршень для виштовхування пари з циліндра на стадії випуску, буде менше, ніж робота, яку виконає пара над поршнем на стадії впуску. У такий спосіб може бути отримана деяка результуюча робота, але для цього, як тепер зрозуміло, необхідна різниця температур. Аналогічно, якби пара в паровій турбіні не охолоджувалася, то й тиск по обох сторонах кожної лопатки був би однаковим і турбіна не стала б обертатися. Охолодження пари з боку лопасті, поверненої до випускного клапана , приводить до того, що тиск пари з боку лопасті, поверненої до впускного клапана, стає більше й у результаті турбіна обертається.
Принцип дії холодильника чи іншого теплового насоса (наприклад, використовується для створення теплового потоку ззовні усередину будинку чи навпаки; в останньому випадку пристрій називається повітряним конденціонером) складається в
Loading...

 
 

Цікаве