WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Експеремент з дослідження сплаву AqZn. - Курсова робота

Експеремент з дослідження сплаву AqZn. - Курсова робота

зобразили таку схему встановлення ближнього порядку в сплаві в процесі відпалу після деформації або інших обробок, наприклад опромінення нейтронами та в ряду випадків після загартування [12]. Процес починається зі зростання ступеня ближнього порядку на першій координаційній сфері, який швидше йде в насичених дефектами областях кристалу. Потім він розповсюджується на інші координаційні сфери. Поступово впорядкування починає йти в неспотворених областях кристалу, в яких швидкість дифузійних процесів менше, ніж у спотворених. Одночасно йдуть процеси утворення концентраційних неоднорідностей, а також процеси розсмоктування дефектів, внесених обробкою. Однак вони відбуваються повільніше, ніж процес встановлення ближнього порядку, оскільки останній пов'язаний з міграцією атомів на значно менші відстані. Поява областей різного складу таступеня порядку в свою чергу може призвести до зміни енергії впорядкування, оскільки остання пов'язана з електронною та спіновою взаємодією, що залежить від складу. Ці ефекти особливо відчутні з суттєво різними фізичними характеристиками компонентів. Поблизу дефектів енергія впорядкування також може відрізнятись від енергії в неспотвореному твердому розчині. Характер остаточної релаксації при відпалі, що визначається прагненням вільної енергії до мінімуму, буде залежати від досягнутого на початковій стадії стану. Якщо на цій стадії неоднорідності дійсно виникли (в достатній кількості), то в подальшому енергія твердого розчину може знижуватись або за рахунок розсмоктування неоднорідностей, або внаслідок зміни типу впорядкування в деяких областях розчину (наприклад, по типу сусідньої фази). У сплавах з малою швидкістю дифузії останній з цих процесів може бути енергетично вигіднішим, тоді неоднорідності не будуть розсмоктуватись протягом тривалого часу. Ще невідомо, чи завжди в однорідному твердому розчині ці неоднорідності будуть розсмоктуватись до кінця. Можливим наслідком вкладу енергії дефектів та неоднорідностей може бути поява ближнього впорядкування по типу фаз, що не спостерігаються на рівноважній діаграмі стану.
В роботі [8] були виміряні параметри ?1 та побудована залежність ?1 від температури відпалу для Cu3Al. Отримана складна залежність, пов'язана, за думкою авторів, з необхідністю збільшення часу для встановлення дійсно рівноважних значень ступеня ближнього порядку. На прикладі NiPt було показано, що ?і при ізотермічному відпалі (принаймні після деформації) проходить через максимум, і навіть відпал при Т=700оС протягом 50 годин не доводить сплав до повної рівноваги.
Таким чином, необхідно відзначити, що для досягнення постійних значень ?і при відпалі після деформації необхідно досить багато часу. Визначено[6], що ?і має складну залежність, що не вичерпується простим співвідношенням ?і~1/T. Складна залежність ?і як приклад, подана в [8]. В CuAl виявлено аномалію теплоємності. Ці факти ще раз свідчать про необхідність комплексних вимірів фізичних властивостей ближнього порядку. Різні дефекти решітки (вакансії, дислокації, дефекти упаковки, тощо) істотно впливають на кінетику встановлення ближнього порядку та на структуру розподілу атомів в решітці, що досягається в певні скінченні проміжки часу. Ряд процесів, що відбуваються в однофазних твердих розчинах, імовірно є аналогічними процесам, що відбуваються в сплавах, що розпадаються поблизу границі розчинності. В однофазних твердих розчинах при відпалі після деформації має місце спрямована дифузія, тому можуть виникнути концентраційні неоднорідності та області, збагачені (збіднені) другим компонентом, в яких виникає значний ближній порядок. В міру зростання температури такі утворення можуть розсмоктуватися, що супроводжується зниженням ступеня порядку. Ці явища і обумовлюють складну залежність ступеня порядку від температури і часу.
Значний прогрес в експериментальному дослідженні фазового переходу порядок-безладдя в конкретних сплавах був досягнутий в останні десятиліття. До теперішнього моменту такі переходи були вивчені в приблизно 50 бінарних сплавах [13,14]. Ось основні риси цього переходу [35]. По-перше, це є дифузійне перетворення, до того ж дифузія на короткі відстані відбувається в незмінній або майже незмінній кристалічній гратці. По-друге, це є конфігураційний перехід, оскільки змінюється розташування атомів різного сорту по вузлах кристалічної гратки. Об'ємні зміни, тетрагональні та інші спотворення гратки, тобто неконфігураційні дефекти, підкоряються конфігураційному переходу, наприклад, симетричному. Тому, по-третє, параметрами переходу є параметри дальнього порядку ?. По-четверте, фазовий перехід порядок-безладдя є перетворенням між станом з неповним дальнім порядком та ближнім. Зникненню дальнього порядку передує часткове розупорядкування, а невпорядкований стан є невпорядкованим у розумінні дальнього порядку, ближній в ньому завжди має місце.
1.2 Вплив упорядкування атомів на електроопір сплавів
Основні закономірності, що виявляються при дослідженні електроопору металів та сплавів, можна якісно зрозуміти, беручи до уваги хвильові властивості електронів провідності. Електронна хвиля утворює в просторі потенціал, що є періодичною функцією координат. Така ідеальна кристалічна решітка не має електроопору. Коли ж кристалічна решітка металу або сплаву містить які-небудь спотворення, що ведуть до порушення періодичності потенціалу, то з'являється розсіяння електронних хвиль, що обумовлює електроопір. Існує три основних види спотворень кристалічної гратки, що приводять до появи електроопору: 1) тепловий рух атомів; 2) порушення періодичності, пов'язане з чергуванням атомів різного сорту або наявністю вакансій (дірок) на вузлах кристалічної гратки, а також з наявністю впроваджених атомів, та 3) статичні спотворення решітки, що пов'язані зі зміщенням центрів коливань атомів від їх правильних місцезнаходжень.
В чистих металах, що не мають статичних спотворень та дірок, повинна існувати лише перша з вищезгаданих причин. Відповідний електроопір металу буде залежати і при абсолютному нулі повинен зовсім зникнути. Друга причина розсіяння електронів, що має місце в неповністю впорядкованих металах та сплавах, які мають дірки в вузлах та атоми в міжвузлових положеннях решітки, обумовлює додатковий електроопір, що залишається і при Т=0оК. До цього ж результату веде і наявність статичних спотворень решітки. Електроопір, що залишається при Т=0оК, називають залишковим електроопором. Залишковий електроопір може бути визначений з вимірів електроопору при низьких температурах та екстраполяції результатів до температури абсолютного
Loading...

 
 

Цікаве