WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Моделювання резонансних явищ з використанням програмного забезпечення “Electronics workbench” у процесі вивчення електричних ланцюгів змінного струму - Реферат

Моделювання резонансних явищ з використанням програмного забезпечення “Electronics workbench” у процесі вивчення електричних ланцюгів змінного струму - Реферат


Реферат на тему:
Моделювання резонансних явищ з використанням програмного забезпечення "Electronics workbench" у процесі вивчення електричних ланцюгів змінного струму
Розробка, дослідження й практичне застосування будь-якого електротехнічного або радіоелектронного пристрою супроводжується фізичним або математичним моделюванням. Фізичне моделювання пов'язане з великими матеріальними витратами, оскільки потребує виготовлення складних макетів і їх дослідження. Часто фізичне моделювання просто неможливе через надзвичайну складність проектованих приладів, наприклад, при розробці великих і надвеликих інтегральних мікросхем. У цьому випадку вдаються до математичного моделювання з використанням засобів і методів обчислювальної техніки. Особливо ефективним такий підхід є для проведення лабораторних практикумів з дисциплін електротехнічного напряму. Як показує педагогічний досвід роботи з реальною навчальною стендовою апаратурою, значну частину часу в недосвідченого студента займає не дослідницький процес, а збірка схеми та усунення помилок у ній. Завдяки використанню програмного забезпечення "Electronics Workbench" віртуальна електронна лабораторія стає легкодоступною, що дозволяє зробити вивчення електричних схем набагато ефективнішим. Схемні файли-заготівки студент може створити наперед на домашньому персональному комп'ютері, а при виконанні лабораторної роботи займатися тільки дослідницькою діяльністю.
Найважливішим розділом теоретичних основ електротехніки є вивчення резонансу для практичного застосування в схемах промислової електроніки. Методика комп'ютерного моделювання резонансних явищ може стати основою лабораторних практикумів з курсу електротехніки. Стисло розглянемо фізичні величини й основні співвідношення між ними, які експериментально перевіряються при дослідженні резонансу.
Явище, коли індуктивний і ємкісний опори в RLC-ланцюзі між собою рівні, називається резонансом. Розрізняють послідовний (для послідовного RLC-ланцюга) й паралельний (для паралельного RLC-ланцюга) резонанси. Послідовний RLC-ланцюг частіше за все називають послідовним коливальним контуром, а паралельний - паралельним коливальним контуром. У разі малих утрат (опором R можна знехтувати) для обох контурів резонанс наступає за умови , звідки виходить відомий вираз для резонансної частоти:
або . (1)
При послідовному резонансі (для послідовного контуру) струм в ланцюзі (мал.1) визначається тільки опором R і збігається за фазою з напругою вхідного сигналу. При цьому струм у ланцюзі дорівнює , а напруги на індуктивності і конденсаторі : (2)
можуть перевищувати напругу вхідного сигналу в Q разів. Безрозмірна величина (3)
називається добротністю й показує, у скільки разів напруга на індуктивності або ємкості при резонансі перевищує вхідну напругу контуру (на практиці використовується також величина, зворотна добротності, яка називається коефіцієнтом загасання ). З формули (3) видно, що добротність контуру зростає із збільшенням індуктивності L і зменшенням опору втрат R і ємкості С контуру. З урахуванням формули (1) вираз (3) для добротності може бути записаний також у вигляді
, (4)
де має розмірність опору й називається характеристичним опором контуру.
Амплітудно-частотна характеристика резонансного ланцюга визначається як відношення загальної формули для струму до струму при резонансі, тобто
. (5)
У радіотехніці залежність за цим виразом (5) зазвичай називають резонансною кривою та для малих відхилень частоти щодо резонансної частоти використовують для неї приблизний вираз [l]:
, (6)
де - розбіжність за частотою.
Наведемо приклад дослідження послідовного RLC-ланцюга (мал.1) з використанням програмного забезпечення "Electronics Workbench". Для вимірювання фазових співвідношень використовуємо прилади віртуальної лабораторії: осцилограф та боуд-плоттер (вимірювач АЧХ і ФЧХ). Згідно з формулою (1) при вказаних на схемі значеннях індуктивності і ємкості f0=159.155 Гц, що відповідає частоті вхідного сигналу, тобто в схемі має місце резонанс. Діюче значення струму в ланцюзі 1 мА відповідає показникам амперметра. Згідно з (2) падіння напруги на індуктивності і ємкості
В, В.
Ці значення фіксують відповідні вольтметри при моделюванні схеми.
Мал. 1. Послідовний резонансний контур
Мал. 2. Осцилограми сигналів в послідовному контурі (а) та його ФЧХ (б)
Мал. 3. Паралельний резонансний контур
З осцилограм сигналів у послідовному коливальному контурі (мал. 2, а) видно, що напруга на опорі (осцилограма А) і, відповідно, струм у ланцюзі збігається за фазою із вхідною напругою (осцилограма В). Це означає, що на резонансній частоті фазо-частотна характеристика контуру (мал. 2, б) повинна мати нульове значення. Проте через дискретність переміщення візирна лінія боуд-плоттера може бути встановлена на ФЧХ тільки поблизу резонансної частоти (161 Гц), тому значення зсуву фази, що відображається в приладі, складає 3,44°.
Розглянемо резонанс струмів у паралельному RLC-ланцюзі. Найбільшу увагу резонансу цього типу надається в радіотехніці, де паралельний коливальний контур є основним елементом більшості частотно-вибіркових пристроїв. У теоретичних основах радіотехніки [1] показується, що характеристики паралельного коливального контуру можна розраховувати за формулами для послідовного контуру. Проте є відмінності, які враховуються при моделюванні конкретної схеми паралельного контуру (мал. 3).
Власне коливальний контур складається з двох паралельно включених гілок: індуктивної з опором втрат у вигляді внутрішнього опору RL, амперметра IL і ємкості з опором втрат у вигляді внутрішнього опору RC амперметра IC. У ході експериментів ці значення опорів можуть змінюватися й для даної схеми встановлені рівними 1 Ом для обох амперметрів. До контуру підключено вимірювальні прилади, призначення яких очевидно. Наприклад, вольтметри UL і URL призначені для вимірювання падіння напруги на індуктивності L і на внутрішньому опорі RL амперметра. Для паралельного коливального контуру вводиться параметр, який дорівнює опору контуру на резонансній частоті. Він називається резонансним опором RP та визначається за формулою:
, (7)
де - сумарний опір втрат контуру.
Співвідношення між підведеним до контуру загальним струмом I і струмом у контурі Ik на резонансній частоті визначається виразом Ik = Q I, де Q визначається формулою (3), але з урахуванням того, що опір втрат тепер RS.
Для схеми (мал. 3) маємо: Ом; . Підведений до контуру струм мкА; струм контуру мкА, що практично збігається з показаннями приладів. Неточності, які мають місце, визначаються наближеністю формул, що використовуються. Наприклад, для паралельного контуру точне значення резонансної частоти може бути визначено з виразу [1]:
. (8)
У разі нехтування опором RS вираз (8) збігається з формулою (1). З (8) видно, що із збільшенням втрат контуру RS його резонансна частотазменшується.
Амплітудно-частотна характеристика паралельного контуру розраховується за допомогою формули (5). Для схеми на мал. 3 АЧХ має вигляд, показаний на екрані боуд-плоттера (мал. 4, а) в режимі вимірювання амплітуди. Фазо-частотна характеристика паралельного коливального контуру розраховується за допомогою виразу і показана на екрані боуд-плоттера (мал. 4, б) у режимі вимірювання фази.
Мал. 4. АЧХ (а) і ФЧХ (б) паралельного коливального контуру
Оскільки для практичних застосувань найбільший інтерес являє область частот поблизу резонансної ( , де f - поточне значення частоти), то для зручності інтерпретації отриманих результатів доцільно використовувати наближену формулу для ФЧХ у вигляді .
З виразу для випливає, що при f=f0 фазовий кут дорівнює нулю, проте вже при незначному відхиленні частоти в один або інший бік від резонансної спостерігається різка зміна фази як у область негативних (при ff0). Крутизна перехідної ділянки тим більша, чим більшою є добротність контуру, а його ширина залежить від смуги пропускання 2 f на рівні 0,707. Це значення виходить після підстановки у формулу (6) значення .
Педагогічний досвід вивчення резонансних явищ засвідчує особливу ефективність застосування програмного забезпечення "Electronics Workbench" при проведенні лабораторних занять з електротехніки.
ЛІТЕРАТУРА
1. Асеев Б.П. Колебательные цепи. - М.: Гос. изд-во литературы по вопросам связи и радио, 1955. - 462 с.
2. Разевиг В.Д. Electronics Workbench 5 предлагает комплексное решение // PC Week/RE. - 1998. - № 37. - С. 14-15.
3. Электротехника и электроника в экспериментах и упражнениях: практикум на Electronics Workbench: В 2-х томах / Под общей ред. Д.И.Панфилова - М.: ДОДЭКА, 2000.
Loading...

 
 

Цікаве