WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Дифракція світла - Реферат

Дифракція світла - Реферат


Реферат з фізики
Дифракція світла
?
ВСТУП.
Навколишній світ за своєю природою є матеріальним. Фізика - це наука, яка вивчає найзагальніші форми руху матерії ( механічні, теплові, електромагнітні та інші) та їх взаємні перетворення. Матерія може існувати в двох формах: у вигляді речовини та поля. До першої форми матерії належать, наприклад, електрони, протони, атоми, молекули та всі речовини, з яких вони побудовані. До другої - електромагнітні, гравітаційні поля. Різні види матерії можуть переходити одна в одну. Наприклад, електрон і позітрон при взаємодії перетворюються в електромагнітне випромінювання у вигляді фотонів. Можливий і зворотний процес.
Більшість фактичних відомостей про природу і навколишні явища людина отримала за допомогою зорового сприйняття, створеного світлом. Розділ фізики, в якому вивчають світлові явища, називається оптика. Історія розвитку оптики підтверджує одне з основних положень діалектики - закон єдності та боротьби протилежностей.
Світло за своєю природою - явище електромагнітне, але воно одночасно проявляє хвильові ( в явищах інтерференції, дифракції, поляризації, дисперсії) і квантові властивості (в явищах фотоефекту, люмінесценції і т.і.). Із зменшенням довжини хвилі (збільшенням частоти) дедалі чіткіше проявляються квантові властивості світла.
З точки зору сучасних теорій неправильно було б протиставляти хвильові та квантові властивості світла. Навпаки, їх можна порівнювати і поєднувати на основі теорії відносності та сучасних положень квантової фізики. З позицій сучасної фізики немає розбіжностей між квантовими і хвильовими уявленнями про світло - це різні властивості одного явища, і в цьому полягає діалектична єдність матерії.
Явища, в яких світло найбільше виявляє свої хвильові властивості, розглядає хвильова оптика.
?
Дифракція світла.
В геометричній оптиці широко користуються поняттям світлового променя, тобто вузького пучка світла, який прямолінійно поширюється. Прямолінійність поширення світла в однорідному середовищі така звична, що здається очевидною. Переконливим підтвердженням цього закону може бути утворення тіні за непрозорою перешкодою, що стоїть на шляху світла, яке випромінюється точковим джерелом.
В той же час прямолінійність поширення світла зовсім не була такою очевидною з позицій хвильової теорії. Адже за принципом Гюйгенса кожну точку поля хвилі можна розглядати як джерело вторинних хвиль, які поширюються вперед в усіх напрямках, в тому числі і в область геометричної тіні перешкоди. Крім того, досліди показали, що закон прямолінійного поширення світла не є універсальним. Він особливо помітно порушується при проходженні світла крізь досить вузькі щілини й отвори, а також при освітленні невеликих непрозорих перешкод. У цих випадках на екрані, розміщеному за отвором або перешкодою, замість чітко розмежованих областей світла і тіні спостерігається система інтерференційних максимумів та мінімумів освітленості. Наприклад, якщо на невеликий непрозорий диск падає світло від точкового джерела S, розміщеного проти центра О диску, то на встановленому за диском екрані спостерігається система концентричних темних та світлих кілець. Парадоксально те, що в центрі кілець, який лежить у точці перетину прямої SO з екраном, буде світла пляма. Із збільшенням радіусу диска інтенсивність цієї плями та інших світлих кілець поступово зменшується, і за диском утворюється область геометричної тіні. Проте навіть для перешкод і отворів великих розмірів немає різкого переходу від тіні до світла. Завжди є деяка перехідна область, в якій можна виявити слабкі інтерференційні максимуми і мінімуми.
Всі ці явища , що виникають при поширенні світла в середовищі з різко виявленими неоднорідностями, є дифракцією світла. Дифракцією називають сукупність явищ, обумовлених огинанням хвилями перешкод, які зустрічаються на їх шляху, або в більш широкому розумінні - будь-яке відхилення від законів геометричної оптики при поширенні хвиль.
?
1. Принцип Гюйгенса - Френеля.
Природа і основні закономірності дифракції світла можуть бути встановлені за допомогою принципу Гюйгенса - Френеля. За принципом Гюйгенса: кожна точка хвильового фронту є джерелом вторинних хвиль. Френзель істотно розвинув принцип Гюйгенса, припустивши, що вторинні джерела, еквівалентні тому самому джерелу S0, когерентні між собою. Тому в будь-якій точці поза допоміжною замкненою поверхнею S хвилі, які реально поширюються від джерела S0, повинні бути результатом інтерференції віх вторинних хвиль. Вибір поверхні S цілком довільний, у кожній конкретній задачі її беруть такою, щоб максимально спростити розв'язання. Як правило, вважають, що поверхня S збігається у деякий момент часу з положенням однієї з хвильових поверхонь, які відповідають джерелу S0. Очевидно, що при такому виборі поверхні S усі вторинні джерела коливаються в одній фазі.
Ці два вихідні положення ще недостатні для кількісних розрахунків дифракції світла, бо вони зовсім не торкаються інтенсивності і характеру спрямованості випромінювання вторинних джерел. Тому Френель висловив припущення про те, що для поверхні S, яка збігається з хвильовою поверхнею, потужності вторинного випромінювання однакових за площею ділянок однакові. Крім того, він вважав, що кожне вторинне джерело випромінює переважно в напрямку нормалі n до хвильової поверхні в цій точці. Відповідно, амплітуда вторинних хвиль у напрямі, який утворює з n кут ? , тим менше, чим більший кут?, і дорівнює нулю при ? ? ?/2 (рис.10).
Принцип Гюйгенса і закон інтерференції дозволяють проаналізувати усі основні дифракційні явища. Оскільки точок фронту, які є когерентними джерелами нових хвиль, нескінченна множина, то розрахунок інтерференції приводить до досить складного інтегрування. Для його спрощення Френель запропонував оригінальний метод розподілу хвильової поверхні на зони, такі що хвилі від двох сусідніх зон приходять у точку спостереження протилежними за фазою і тому при накладанні взаємно послаблюють одна одну. З методом зон Френеля ми ознайомимося, аналізуючи принципово важливе питання: як хвильова теорія пояснює практично прямолінійне поширення світла і які границі застосування законів геометричної оптики.
Розглянемо задачу знаходження амплітуди світлових коливань у довільній точці М. Нехай S0 - точкове джерело монохроматичного світла в однорідному середовищі. За принципом Гюйгенса від нього в усі боки поширюється сферична хвиля. В деякий момент часу її фронт займає положення S (рис.11). Вибираємо довільну точку М перед фронтом і з'єднуємо її з джерелом S0.
Спосіб побудови кільцевих зон Френзеля показано на рис.11. Межею першої (центральної ) зони є точки поверхні S, що лежать на відстані L+?/2 від точки М. Точки сфери S, що лежать на відстанях L+2?/2, L+3?/2,… від точки М, утворюють межі 2-ї, 3-ї,… зон Френеля. Коливання, які збуджуються в точці М двома сусідніми зонами, протилежні за фазою, оскільки різниця ходу від цих зон до точки М дорівнює ?/2. Томупри накладанні ці коливання повинні взаємно послаблювати одне одного. Таким чином амплітуда результуючих коливань дорівнює:
А = А1 - А2 + А3 - А4 + ..., (24)
де А1, А2, А3,...- амплітуди коливань, які збуджуються окремо 1-ю,2-ю, 3-ю,... зонами.
Зона з більшим номером діє слабше попередньої через більшу віддаленість та
Loading...

 
 

Цікаве