WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Поляризація світла - Реферат

Поляризація світла - Реферат


Реферат з фізики
Поляризація світла
?
ВСТУП.
Навколишній світ за своєю природою є матеріальним. Фізика - це наука, яка вивчає найзагальніші форми руху матерії ( механічні, теплові, електромагнітні та інші) та їх взаємні перетворення. Матерія може існувати в двох формах: у вигляді речовини та поля. До першої форми матерії належать, наприклад, електрони, протони, атоми, молекули та всі речовини, з яких вони побудовані. До другої - електромагнітні, гравітаційні поля. Різні види матерії можуть переходити одна в одну. Наприклад, електрон і позітрон при взаємодії перетворюються в електромагнітне випромінювання у вигляді фотонів. Можливий і зворотний процес.
Більшість фактичних відомостей про природу і навколишні явища людина отримала за допомогою зорового сприйняття, створеного світлом. Розділ фізики, в якому вивчають світлові явища, називається оптика. Історія розвитку оптики підтверджує одне з основних положень діалектики - закон єдності та боротьби протилежностей.
Світло за своєю природою - явище електромагнітне, але воно одночасно проявляє хвильові ( в явищах інтерференції, дифракції, поляризації, дисперсії) і квантові властивості (в явищах фотоефекту, люмінесценції і т.і.). Із зменшенням довжини хвилі (збільшенням частоти) дедалі чіткіше проявляються квантові властивості світла.
З точки зору сучасних теорій неправильно було б протиставляти хвильові та квантові властивості світла. Навпаки, їх можна порівнювати і поєднувати на основі теорії відносності та сучасних положень квантової фізики. З позицій сучасної фізики немає розбіжностей між квантовими і хвильовими уявленнями про світло - це різні властивості одного явища, і в цьому полягає діалектична єдність матерії.
Явища, в яких світло найбільше виявляє свої хвильові властивості, розглядає хвильова оптика.
?
1. Природне та поляризоване світло.
Відомо, що світлі хвилі поперечні: вектори напруженостей електричного Е та магнітного H полів взаємно перпендикулярні і коливаються в площині, яка перпендикулярна до вектора швидкості ? поширення хвилі (тобто до напрямку поширення хвилі). Для описання стану поляризації світлового пучка необхідно мати уявлення про поведінку лише одного з векторів. Говорячи про напрямок світлових коливань, матимемо на увазі напрямок коливань світлового вектора - вектора напруженості Е електричного поля (ця назва обумовлена тим, що при дії світла на речовину основне значення має електрична складова хвилі, яка діє на електрони в атомах речовини). Площина, в якій відбуваються коливання вектора Е, називається площиною поляризації.
Звичайні джерела світла є сукупністю дуже великої кількості швидко висвітлюючи (за 10-7...10-8 с) елементарних джерел (атомів або молекул), які випромінюють світло незалежно один від одного, з різними фазами та орієнтацією векторів Е і H, внаслідок чого в результуючій хвилі орієнтація векторів Е і H хаотично змінюється з часом. Тому в площині, перпендикулярній до напрямку поширення світла, всі напрямки Е є рівно імовірними (рис.17,а). Світло з найрізноманітнішими рівно імовірними орієнтаціями вектора Е називається природним або неполяризованим.
Світло, в якому напрямки коливань якимсь чином впорядковані, називається поляризованим.
Поляризація світла - це така його властивість, яка характеризується просторово-часовою впорядкованістю орієнтації векторів напруженостей електричного та магнітного полів. Під терміном "поляризація світла" розуміють також процес отримання поляризованого світла.
Світло, в якому вектор Е коливається в певній площині, називається плоскополяризованим або лінійно поляризованим(рис.17,б).
Найбільш загальним типом поляризації є еліптична поляризація. В еліптично поляризованій світловій хвилі кінець вектора Е (в певній точці простору) описує деякий еліпс. Лінійно поляризоване світло можна розглядати як один з випадків еліптично поляризованого світла, коли еліпс перетворюється у відрізок прямої лінії., другим випадком є поляризація по колу, коли еліпс перетворюється на коло.
Природне світло можна перетворити в плоскополяризоване за допомогою поляризаторів, пристроїв, які пропускають коливання тільки визначеного напрямку (наприклад, пропускають коливання , паралельні площині поляризатора, і повністю затримують коливання, перпендикулярні до цієї площини). Як поляризатор можна використовувати середовища, анізотропні по відношенню до коливань вектора Е, наприклад, кристал турмаліну.
Розглянемо класичні досліди з турмаліном (рис.18). Спрямуємо природне світло перпендикулярно до пластини турмаліну Т1, яка була вирізана паралельно осі ОО? (напрямок у кристалі, відносно якого атоми кристалічної решітки розташовані симетрично).Обертаючи кристал Т1 навколо напрямку променя, ніяких змін інтенсивності світла після проходження крізь турмалін не спостерігаємо.
Рис.18
Якщо на шляху променя поставити другу пластину турмаліну Т2 і обертати її навколо напрямку променя, то інтенсивність світла після проходження пластини змінюється в залежності від кута ? між оптичними осями кристалів за законом Малюса:
І = І0 cos2? , (34)
де І0 і І - відповідно інтенсивності світла, падаючого на другий кристал, і після його проходження. Отже, як видно з рис.19, амплітуда Е світлових коливань після проходження крізь Т2 буде менша від амплітуди світлових коливань Е0, що падають на Т2 : Е = Е0 сos?..
Так як інтенсивність світла пропорційна квадрату амплітуди, то і отримаємо вираз (34).
Результати дослідів з кристалами турмаліну пояснюються досить просто, якщо виходити з викладених умов пропускання світла поляризатором. Перша пластина турмаліну пропускає коливання тільки означеного напрямку (на рис.18 він показаний стрілкою АВ), тобто перетворює природне світло у плоскополяризоване. Друга пластина турмаліну в залежності від її орієнтації пропускає більшу або меншу частину поляризованого світла, яка відповідає компоненту Е, паралельному осі другого турмаліну. На рис.18 обидві пластини розташовані так, що напрямки коливань АВ і А?В?, які вони пропускають, перпендикулярні один до одного. В даному випадку Т1 пропускає коливання, напрямлені вздовж АВ, а Т2 їх повністю гасить, тобто за другу пластину турмаліну світло не проходить.
Пластина Т1, що перетворює природне світло у плоскополяризоване, є поляризатором. Пластина Т2 призначена для аналізу ступеня поляризації світла, називається аналізатором. Обидві пластини зовсім однакові (їх можна поміняти місцями).
Отже, закон Малюса (див. вираз (34)) : Інтенсивність І лінійно поляризованого світла після проходження через аналізатор дорівнює добутку інтенсивності І0 падаючого на аналізатор світла і квадрату косинуса кута ?, що утворюється між площинами поляризації поляризатора і аналізатора.
2. Поляризація світла при відбиванні та заломленні світла
на межі поділу двох
Loading...

 
 

Цікаве