WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Дослідження ВТНП-плівок - Курсова робота

Дослідження ВТНП-плівок - Курсова робота

( менше 20% ).
G,Ом
Рис.2.1.1. Залежність чутливості вимірювального резонатора (крива 1 ) і його геометричного фактора (крива 2 ).
При виборі геометричних розмірів слід також враховувати необхідність роботи в області з досить розрідженним спектром власних частот резонатора.
Аналіз можливості застосування об'ємного циліндричного резонатора для атестації на НВЧ ВТНП-матеріалів по величині їх поверхневого імпеданса показав, що при його оптимальному конструюванні, забеспечуючим поєднання високої чутливості і не досить великого зниження добротності, можливо вимірювання Rs з похибкою близько 10% при його величині, порівняної з поверхневим опором міді R0, при чому з збільшенням Rs похибка зменшується до 1% при Т=300К, а з зменшенням Rs зростає до 100-200% при Rs/R0<10-1-10-2. Похибка збільшується також пропорційно відношенню площі торцевої поверхні резонатора до площі досліджуваного ВТНП-зразка.
Для підвищення метрологічних характеристик вимірювача поверхневого НВЧ-імпеданса необхідно використовувати резонансні системи з великою добротністю і разом з тим невеликих розмірів, щоб забечити локальність контролю ВТНП-матеріалів.
2.2.Візуалізація полів у резонаторі.
Метод пробного тіла, являючись модифікацією методу малих збурень, дозволяє досить просто виміряти амплітудний розподіл полів для будь-якого типу коливань резонатора і не
накладає жорстких умов на стабільність частоти джерела НВЧ[11].
Описуваний метод вимірювання розподілу поля заснований на внесенні в резонансний об'єм малого сильнопоглинаючого енергію НВЧ-коливань тіла. При достатньо малих розмірах поглинача порівняно з резонансним об'ємом має місце зменшення добротності і відповідно амплітуди резонансного піка основного або будь-якого вищого типу коливань без помітної зміни їх резонансних частот. Беручи до уваги квадратичність характеристики детектора і малість осьових складових полів резонатора, легко показати, що поле в точці, в якій розташований зонд, пов'язане з амплітудою сигналу на осциллографі співвідношенням
E(x, y, z ) / Emax = H(x, y, z ) / Hmax= C ( , (2.2.1)
де
-1/4 (1- )1/2, = h (x, y, z ) / h0 (2.2.2)
h0 - амплітуда сигналу досліджуваної моди при відсутності поглинаючого зонда, h(x, y, z)-
амплітуда при розміщенні зонда в точці x, y, z, C-нормуючий множник, що визначається для кожного ряду вимірювань з умови x, y, z) / max max =1
Таким чином, знімаючи залежність h(x, y, z), отримуємо амплітудний розподіл поля в резонаторі.
Так як ступінь зміни коефіцієнта передачі або добротності резонатора визначається інтенсивністю поля в точці розташування зонду і його параметрами, то розмір пробного тіла стає
.dз /
0.4
0.2
0 5 10 15 20 25 30 Q 103
Рис.2.2.1. Залежність зміни оптимального розміру зонду від добротності
досліджуваних коливань
одним із основних джерел похибки. Застосування великих зондів призводить до зриву коливань за рахунок сильного поглинання чи розсіяння поля на ньому. Зменшення ж розміру зонда призводить до зниження чутливості, причому критерієм впливу зонда на резонатор буде добротність досліджуваних коливань.
На рис. 2.2.1 приведено залежність зміни оптимального розміру пробного тіла від добротності досліджуваного коливання. В якості оптимального вибиралось пробне тіло, при якому похибка вимірювань залишалась не гіршою 5 %[19].
2.3.Дослідження плівок по НВЧ втратам.
Відомо, що власна добротність об'ємного резонатора при заданій геометрії всеціло визначається вибраною коливальною модою і поверхневим опором його стінок. Якщо одну, декілька або всі стінки такого резонатора виконати із ВТНП, то, знаючи структуру поля в резонаторі і його геометрію, по даним вимірювань власної добротності Q0, можна визначити поверхневий опір Rs:
Q0= (2.3.1.)
де Q0- власна добротність коливань в резонаторі;
-магнітна проникність;
-кругова частота.
Як відомо, власна добротність коливань резонатора, виготовленого повністю з одного матеріала, з ТЕ011 модою може бути виражена у вигляді
(2.3.2)
або для резонатора, торцева стінка якого заміщена ВТНП-матеріалом.
(2.3.3)
де Rsm, Rsc - поверхневий опір метала і надпровідника відповідно;
r01=3.832;
a, b - геометричні коефіцієнти, які залежать від форми.
Із виразу (2.3.3) можна отримать
(2.3.4)
де Qm - власна добротність резонатора ,виконаного цілком із нормального метала;
В - коефіцієнт геометрії і частоти резонатора.
Виразимо Rsc із (2.3.4)
(2.3.5)
де Qс - власна добротність резонатора, виконаного із нормального метала, при заміні його робочої поверхні зразкомдосліджуваного надпровідника.
Таким чином, для вимірювання поверхневого опору зразка ВТНП необхідно спочатку виконати калібровочні вимірювання поверхневого опору міді ( визначити температурний хід Qm i Rsm ), а потім, вимірюючи температрний хід добротності резонатора з зразком ВТНП, визначити величину Rsc.
Розділ 3. Установка.
3.1.Блок-схема установки.
Блок-схема експерементальної установки представлена на рис.3.1.1. Сигнал з НВЧ-генератора (1) поступає на 2-Т міст (2), з якого частина сигналу йде на детектор (3) системи АРП (автоматичне регулювання потужності), причому на один із входів АРП подється продетектований НВЧ сигнал, а з виходу НВЧ-генератора на другий вхід системи АРП подається опорний сигнал, який визначає рівень потужності.
Інша частина сигналу з виходу 2-Т моста (2) подається на направлений відгалуджувач (4) і навантаження (7). З направленого відгалуджувача (4) сигнал поступає на частотомір РЧЗ-72 (5).
Основний сигнал з виходу 2-Т моста (2) через поляризаційний атенюатор (7) поступає до кріоблоку ( кріостат ). Крiостат являє собою вiдкачуваний вакумний сосуд, в якому розташованi два коаксiальнi баки.
Зовнiшнiй бак , в якому знаходиться рiдкий азот, служить екраном, який зменшуе витрати гелiю, який знаходиться у внутрiшньому бацi , за рахунок нагрiву випромiнюванням. Зв'язок резонатора з зовнiшнiм колом забезпечувався хвилеводним трактом (рис3.1.2.). В кріостаті розташованй вимірювальний резонатор - (8), який призначений для вимірювання поверхневого опору Rs (рис3.1.2.). Резонатор знаходиться в середині надпровідного магніта, підключеного до блоку живлення (9).
З виходу вимірювального резонатора (8) сигнал надходить до модулятора (10) і після модуляції, через детектор (11), сигнал поступає на нановольтметр (12), який використовується для виміру частоти сигналу, який пройшов через вимірювальний резонатор (8). Нановольтметр працює в режимі синхронной модуляції, для цього одночасно через детектор (11) і з виходу НЧ-генератора (13) подаються сигнали на вхід нановольтметра. З виходу нановольтметра сигнал через блок підсилення (14) подається на вхід осцилографа (15).
Для стабілізації температури в схемі установки використовується електронна система стабілізації низьких температури ( ЕСНТ ) (18), до якої входять: датчик температури, датчик стабілізації
Loading...

 
 

Цікаве