WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Дослідження ВТНП-плівок - Курсова робота

Дослідження ВТНП-плівок - Курсова робота

Дійсно, ймовірність проникнення вихрів через бар'єр висотою U
W = W0 exp ( -U / kT ). (1.1.1)
При наявності струму
U = U0 ( 1 - J / Jc ), (1.1.2)
і тому
(1.1.3)
Вирішуючи цей вираз відносно J, отримуємо
. (1.1.4)
Таким чином, якщо в надпровіднику ІІ роду з пінінгом можливий надпровідний струм, то він буде затухати з часом. В традиційних надпровідниках U0/kT велике, і цей ефект практично відсутній. В ВТНП величина U0/kT 0,1, і рух вихрів легко спостерігати.
Перші ВТНП були отримані спіканням відповідних хімічних елементів з послідуючим відпалом в атмосфері кисня. В результаті отримується керамічний сплав, який складається з спечених гранул. Тому такі ВТНП називають керамічними або гранулярними. Характерний розмір складає біля 10 мкм. Перші експеременти проводились саме на таких керамічних зразках, і лише потім навчилися вирощувати монокристалічні зразки, що до цього є досить важкою технологічною задачою. Гранулярні надпровідники представляють собою середовище з слабкими джозефсоновськими зв'язками, які визначають незвичайні його електродинамічні властивості.
1.2. НВЧ властивості плівок ВТНП.
Основою феноменологічної моделі, котра широко застосовується при розрахунках поверхневого опору на НВЧ, є двухрідинна модель надпровідника. В рамках цієї моделі зв'язок струму і поля має вигляд
(1.2.1)
де
, , (1.2.2)
nN i nS - концентрація носіїв при ТДля полів, які міняються по гармонічному закону, використання рівнянь Максвела разом з (1.2.1-1.2.2) дозволяє ввести ефективну діелектричну проникність середовища
. (1.2.3)
Тут - відносна діелектрична проникність кристалічної гратки; L - лондонівська глибина проникнення [ 14 ]. Для аналізу електродинаміки надпровідника потрібно визначити хвильвий опір W i хвильове число k для плоскої хвилі, яка розповсюджується в надпровіднику. В випадку розповсюдження хвилі в вакуумі , .
Підставляючи сюди замість 0 співвідношення (1.2.3) для eff і опускаючи в ньому член, який містить , отримаємо
; , (1.2.4)
де
. (1.2.5)
Величина має зміст комплексної глибини проникнення, а N - скінової глибини, яка пов'язана з наявністю носіїв у вільному стані. Замітимо, що побудована модель справедлива в області частот 1 вираз (1.2.7) відповідає багатократно експерементально підтвердженому факту лінійної залежності питомого опору ВТНП-матеріалів від температури. На основі (1.2.2, 1.2.6 і 1.2.7) можна зробити висновок, що
N(t)=t1/2, t<1
(1.2.8)
N(t)=t-1 , t 1
Для надпровідникової плівки, товщина якої h L поверхневий імпеданс Z рівний її хвильовому імпедансу Z=W. Використовуючи (1.2.4) для дійсної частини Z отримаємо [ 15 ]:
, L<< N. (1.2.9)
Удосконалення технології росту кристалів і методики вимірювань дозволить отримувати значення R, близькими до теоретичних розрахунків, зроблених на основі [ 14 ]
????????????????????????????????????
Вище сказане у п.1.1 вiдносилось до випадку постiйного магнiтного поля та струму. Для даної роботи бiльш актуальним є випадок змiнного НВЧ поля та струму.
Для введення поверхневого iмпедансу розглянемо випадок, коли металева поверхня спiвпадає з площиною XY, а метал займає напiвпростiр в напрямку осi z (Рис.1.3.1.). Метал будемо вважати однорідним , ізотропним і лінійним.
Рiвняння Максвела, нехтуючи струмом зміщення, для комплексних амплiтуд можна записати:
(1.3.1)
Рис.1.3.1. До введення поняття поверхневого імпедансу.
Як було раніше вказано, закон змiни електромагнiтного поля можна взяти у виглядi плоскої хвилі, тобто eі t.
Iз врахуванням того, що значення нормальних похiдних компонент поля в металi значно бiльшi тангенцiйних, з двох останнiх рiвнянь (1.3.1) i рiвняння div j=0 , отримаємо:
,
, (1.3.2.)
,
що стосовно до нормальних компонент змiнних полiв означає, що Еn 0, Hn 0, jn 0. Нехтуючи тангенцiйними похiдними з перших двох рiвнянь (1.3.1) витiкає
, (1.3.3)
,
де - одиничний вектор нормалi до поверхнi, направлений в середину металу.
Iнтегруючи рiвняння (1.3.3) по z вiд 0 до , знаходимо
,
(1.3.4)
де - комплексна амплiтуда повного струму, що перетинає безмежну площадку одиничної ширини, розташовану перпендикулярно струму. У випадку iзотропного металу для одномiрної задачi завжди можна написати
, (1.3.5)
де k - комплексна величина, що залежить вiд частоти i параметрiв металу.
Пiдставляючи (1.3.5) в (1.3.4), отримаємо
, (1.3.6)
де
, (1.3.7)
Поверхневий iмпеданс Z складається з дiйсної та уявної частин: поверхневого опору R та поверхневого реактансу X вiдповiдно. Величина k називається комплексною глибиною проникнення, яка також має дійсну та уявну частини
, (1.3.8)
Величини 1 і 2 інколи називають індуктивною та резистивною глибиною скін-шару.. Із (1.3.7) отримаємо зв'язок з R i X :
,
(1.3.9)
Комплексну глибину проникнення можна розглядати як другий метод введення поверхневого iмпедансу, зв'язок уявної та дiйсної частин якого з Х i R задається спiввiдношеннями (1.3.9).
Внаслiдок неперервностi тангенцiйних складових електричного та магнiтного полiв на границi, спiввiдношення (1.3.6) залишаеться вiрним в довiльнiй точцi граничноi площини. Тому його можна розглядати як наближену однорiдну граничну умову для широкого класу граничних задач прикладноi електродинамiки (гранична умова Леонтовича). Цi умови є особливо важливими, бо можна розв'язувати зовнiшнюелектродинамiчну задачу при заданнi однiєi лише величини Z, не цiкавлячись розподiлом полiв всерединi металу.
Якщо зовнi металу iснує лiнiйно поляризоване електромагнiтне поле, то при вiдповiдному виборi напрямiв осей x та y завжди можна сполучити вектор з вiссю X, а вектор з вiссю Y. З спiввiдношень (1.3.3, 1.3.4, 1.3.6) одержимо рiзнi, часто використовуванi спiввiдношення для поверхневого iмпедансу:
(1.3.10)
Якщо метал лiнiйний, то внаслiдок лiнiйностi рiвняння (1.3.1) поверхневий імпеданс не залежить вiд амплiтуд електричного i магнiтного полiв i визначається лише параметрами металу.
1.4. Залишковий поверхневий НВЧ опiр в надпровіднику.
В попереднiх роздiлах була побудована модель, що описує основнi електродинамiчнi властивостi ВТНП. Найбiльш
Loading...

 
 

Цікаве