WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Верифікація закону всесвітнього тяжіння. - Реферат

Верифікація закону всесвітнього тяжіння. - Реферат

нуль-вектор. Таку систему відліку називатимемо ізодромною (супутньою). Принагідно відзначимо, що в класичній механіці пов'язана з центроїдом система відліку також є ізодромною. В ізодромній системі:
(27)
Швидкості змін мас тіл у релятивістській механіці визначаються рівнянням Лоренца-Айнштайна. Зважаючи на (27), для маси будемо мати:
(28)
Введемо поняття зведеної маси тіла за відношенням до :
. (29)
Без обмеження загальності у подальшому викладі вважатимемо, що
(30)
Використовуючи зв'язки (26), (28), перепишемо формулу (24) для обчислення швидкості руху центроїда в ізодромній системі відліку в такому вигляді:
. (31)
Враховуючи (28), дамо оцінку величини поряд із :
(32)
Терм
(33)
досягає максимального значення при . Тому для реальних тіл, коли виконується умова великих зведених відстаней між ними, маємо:
. (34)
Початок координат ізодромної системи відліку розмістимо всередині фігури, яку описує центроїд при русі тіл. Зважаючи на (34), поперечник цієї фігури буде значно менший за . Тому, нехтуючи квадратичними ефектами, можна вважати, що при обчисленні сили взаємодії між тілами зміни вектора практично не впливають на величину і напрям сили , обчисленої за посередництвом центроїда. Такий висновок дозволяє вводити поняття приєднаної маси за тими ж правилами, як і в класичній механіці [1].
Наведений аналіз показує, що в цілому форма траєкторії у релятивістській задачі двох тіл нічим суттєво не відрізняється від аналогічної, котра визначається засобами класичної механіки. Відмінності проявляються лише в інтегральних ефектах, тобто тих, які накопичуються в процесі руху. Одним із них є повертання перицентра орбіти. Нижче, використовуючи квазікласичний підхід, ми покажемо, як оцінити величину таких впливів.
Диференціюючи (31) за часом , визначимо прискорення центроїда:
. (35)
Зважаючи, що швидкість швидкості зміни маси
(36)
та нехтуючи членами вищого порядку мализни, запишемо вираз для прискорення центроїда в наступному вигляді:
. (37)
У виразах (36) та (37) - ґравітаційний радіус приєднаної [1] маси .
Порівняємо величини прискорення центроїда та напруженості ґравітаційного поля, яке створюється приєднаною масою в околі орбіти тіла:
(38)
Із (38) видно, що це відношення не перевищує квадрата зведеної швидкості руху тіла.
Тому, що швидкість незначна в порівнянні з , а прискорення центроїда мале в порівнянні з , вплив релятивістських змін мас тіл на форму траєкторії орбіти можна шукати методами наближених обчислень, наприклад, методом Пікара [1]. У механіці використання останнього методу збігається з класичним підходом [8] Г.Г. Коріоліса переходу від опису руху в інерційній до опису руху в неінерційній системах відліку:
(39)
Врахування зводить рівняння руху [3] до вигляду:
(40)
Розрахунок дає наступну швидкість повертання перицентра орбіти:
(41)
Функція (41) має екстремум при . У цьому випадку відносне відхилення частоти від при складає:
(42)
Для планет Сонячної системи незначне. Наприклад, для Юпітера .
У системі двох тіл зі співмірними масами необхідно враховувати і вплив на певертання перицентра руху другого тіла навколо центроїда. Момент сили , який вноситься в систему релятивістськими змінами маси , у разів відрізняється від моменту . Обидва впливи додаються, тому при близьких масах та швидкість повертання перицентра може бути більшою не на 25%, а на цілих 100%.
3. Обговорення результатів
Астрономічні спостереження доводять, що за 100 років перигелій Меркурія зміщується у прямому напрямку на 574",10±0",41 [8]. Його більша частина припадає на взаємний вплив планет. Обчислена за теорією Ньютона вона складає 531",5±0",5 за століття [8]. Таким чином, залишається непоясненою величина в 42",6±0",9 [8] за століття. Після розробки ЗТВ довший час вважалося, що теорія Айнштайна, яка вказує на зміщення в 43",03±0",03 за століття [8], прекрасно узгоджується з даними спостережень. Однак проведені Дікке та Голденбергом точні виміри видимої сплюснутості Сонця показали [4], що викликані цим ефектом збурення дають зміщення перигелію Меркурія в 3",4 за століття (у зворотному напрямку), порушуючи цим самим узгодженість теорії та спостережень. Вражає еклектика наведених у ЗТВ міркувань. Так, спочатку 93% ефекту зміщення перигелію Меркурія пояснюють законом всесвітнього тяжіння. Потім вказують на його невідповідність фізичним реаліям і 7% ефекту пояснюють методами ЗТВ. Валідність подібних міркувань завжди було прийнято ставити під сумнів.
Якщо в класичній механіці напрями сили та прискорення тіла збігаються, то в релятивістській механіці названа особливість не виконується і в замкненій системі двох тіл появляється момент сили. Останній перпендикулярний до площини орбіти тіл і періодично змінюється. Перші спроби врахування цього моменту сили обмежувались його дією лише на орбітальний момент імпульсу [8], тому ефект впливу виявився втричі менший очікуваного. Виявлений [3] фактор орбітально-обертальної взаємодії та зроблене уточнення формули для дозволили розвіяти сумніви щодо виконання закону (1). Для орбіти Меркурія значення відрізняється від в 1,04 рази. Це значить, що для ізольованої системи Сонце-Меркурій перигелій останнього за 100 років мав би зміститись на 44",75, а не на 43",03, як це доводить ЗТВ. Додаючи сюди викликаний неточковістю планети та обчислений згідно з виразом (18) кут повороту 0",4 за століття, матимемо 45",15, а враховуючи вплив сплюснутості Сонця в -3",4 за століття, отримуємо повертання в 41",75 за століття. Таке числове значення добре узгоджується з астрономічними спостереженнями. Визначений вплив на швидкість зміщення перицентра орбіти, пов'заний із розв'язком задачі одного тіла в полі центральних сил, для систами Сонце-Меркурій не первищує 10-7, тобто набагато менший від похибки вимірювань.
Основним результатом, отриманим у цьому дослідженні, ми вважаємо реабілітацію закону (1) всесвітнього тяжіння Ньютона, справедливість виконання якого для планет Сонячної системи в рамках єдиного підходу доведена з точністю до 10-10. Усі спроби покращити [8] форму закону (1) притягування тіл виявилися безрезультатними.
Література
1. Берс Л. Математический анализ. - М.: Высш. шк., 1975.
2. Богородский А.Ф. Всемирное тяготение. - К.: Наукова думка, 1971.
3. Горбачевська М. Перерозподіл енергії в релятивістській задачі двох тіл // Науковий вісник ВДУ. - Луцьк: ВДУ, 1998. - С. 19-25.
4. Дикке Р. Гравитация и Вселенная. - М.: Мир, 1972.
5. Пастернак М.П.,Горбачевська М.С. Релятивістське наближення задачі двох тіл при довільному співвідношенні їхніх мас // Науковий вісник ЛДТУ. - Луцьк: ЛДТУ, 1999, с.61-66.
6. Пастернак М., Горбачевська М. Матеріальна точка як об'єкт дослідження механіки // Науковий вісник ВДУ. - Луцьк: ВДУ, 1998. - С. 15-19.
7. Пастернак Р.М. Швидкість зміщення перицентра планет у класичній механіці // Науковий вісник ЛДТУ. - Луцьк: ЛДТУ, 1999. - С. 56-61.
8. Угаров В.А. Специальная теория относительности. - М.: Наука, 1969.
9. Фок В.А. Теория пространства, времени и тяготения. - М.: Физматгиз, 1955.
Loading...

 
 

Цікаве