WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Варіаційні принципи теоретичної механіки - Курсова робота

Варіаційні принципи теоретичної механіки - Курсова робота

аналітичним визначенням ідеальних зв'язків (39), доведемо принцип Д'аламбера - Лагранжа:
у кожен момент часу дійсний рух системи, яка підчиняється ідеальним зв'язкам, відрізняється від руху порівняння тим, що тільки для нього сума елементарних робіт активних сил і сил інерції на будь-яких віртуальних переміщеннях точок системи непозитивна.
Маємо систему n матеріальних точок M1, M2, ..., Mn яка підчиняється ідеальним зв'язкам. На основі принципу Д'аламбера маємо для неї наступні рівності:
(а)
Надамо точкам системи віртуальні переміщення. Тоді на підставі рівностей (а) знаходимо
чи
(b)
Система підлегла ідеальним зв'язкам, тому тут останній доданок, відповідно до співвідношення (39), не невід'ємний. Рівність (b) приймає вигляд:
(41)
і виражає принцип Д'аламбера - Лагранжа.
Якщо умовитися розглядати тільки такі віртуальні переміщення, що залишають точки системи на зв'язках, одержимо загальне рівняння динаміки
Як наслідок з цього рівняння можна одержати диференціальні рівняння руху і загальні теореми динаміки. Цю особливість загального рівняння динаміки уперше відзначив Ж. Лагранж.
Методичне значення загального рівняння динаміки полягає в тому, що воно для більшості задач динаміки дозволяє визначити закон руху, не визначаючи реакції зв'язків. У разі потреби реакції зв'язків можна визначити на другому етапі, після визначення закону руху системи, застосовуючи, наприклад, принцип Д'Аламбера.
2.4.3. Принцип віртуальних переміщень (принцип Лагранжа).
Якщо система знаходиться в рівновазі, то сили інерції дорівнюють нулю:
Рівність (41) приймає вид
(42)
і виражає принцип віртуальних переміщень (принцип Лагранжа): положення рівноваги системи, яка підпорядкована ідеальним зв'язкам, відрізняється від суміжних положень, що допускаються зв'язкам і тому тільки для нього сума елементарних робіт активних сил, що діють на точки системи, на будь-яких віртуальних переміщеннях точок системи не позитивна.
Знак нерівності в співвідношенні (42) має місце в тому випадку, коли серед накладених зв'язків є неутримуючі, а серед віртуальних переміщень є переміщення, що звільняють точки системи від зв'язків. Якщо розглядати тільки такі віртуальні переміщення, що не звільняють точки системи від накладених зв'язків, то знак нерівності в співвідношенні (42) зникає й одержуємо загальне рівняння статики
(43)
Термін "загальне рівняння статики" обумовлений тим, що з нього можна одержати умови рівноваги вільного твердого тіла і всі віртуальні умови рівноваги системи тел.
Застосування загального рівняння статики (43) особливо ефективно при розгляді рівноваги системи тел. Ця ефективність обумовлена тим, що ліва частина рівняння (43) містить тільки активні сили, що дає віртуальність не складати рівняння, що містять реакції, що не підлягають визначенню. Якщо є сили тертя, то їх відносять до активних сил.
2.5. Оптико-механічна аналогія (принцип Мопертюї-Ферма)
Аналогію між механікою точки і теорією хвильового процесу простежимо на прикладі вільної матеріальної точки, що рухається в однорідному полі сили тяжіння.
Як узагальнені координати вибираємо декартові координати: q1 = ?, q2 = у, q3 = z. Відповідні ним узагальнені імпульси наступні: p1 = рx, р2= ру, р3 = рг. Точка вільна, тому узагальнена механічна енергія Н* дорівнює повній механічній енергії ? == Т + ?. Направляючи декартову вісь Оz по вертикалі вгору, знаходимо
(а)
Залежності між узагальненими швидкостями й узагальненими імпульсами мають вигляд:
(b)
У рівність (а) підставляємо узагальнені швидкості, отримані з рівнянь (b). Знаходимо гамильтоніан розглянутої точки:
(с)
Точка має часову симетрію, тому що час t не входить явно у функцію Н. Рівняння Остроградского - Гамільтона - Якобі знаходимо:
(d)
З рівності (d) видно, що точка має просторову симетрію по координатах ? і y. Узагальнені імпульси, що відповідають цим координатам, залишаються постійними;
(е)
тут a1 і a2: - постійні значення узагальнених імпульсів рx і рy відповідно.
З рівностей (е) випливає, що функція Wлінійно залежить від координат ? і y. Тому рішення рівняння (d) шукаємо у вигляді:
W = ?1? + а2у + f(z), (f)
де f(z) - невідома функція. Вираз (f) підставляємо в рівняння (d), знаходимо звичайне диференціальне рівняння першого порядку щодо функції f(z):
Звідси знаходимо
(g)
На підставі формул (f) і (g) визначаємо характеристичну функцію
(h)
де
Визначаємо перші інтеграли канонічних рівнянь динаміки:
(i)
(J)
(k)
Тут рівності (i) - проміжні інтеграли, що визначають узагальнені імпульси розглянутої точки. Геометричні інтеграли (j) визначають сімейство просторових кривих - можливих траєкторій точки, що є лініями перетинання параболічних циліндрів з утворюючими, рівнобіжними осям Оу й Ох відповідно. Кінематичний інтеграл (k) дозволяє визначити кінематичні рівняння руху точки:
Отримане рішення містить шістьох постійних інтегрування, обумовлених заданням початкових значень гамільтонових змінних. Крім того, геометричні інтеграли визначають всю сукупність можливих траєкторій точки. Такою спільністю не володіє розв'язок, отриманий для цієї задачі по методу Лагранжа.
Щоб відзначити ще одне достоїнство отриманого рішення згадаємо закон геометричної оптики: в оптично неоднорідному середовищі світловий промінь поширюється по кривій, дотична до якої в кожній точці збігається з нормаллю до хвильової поверхні, що проходить через цю точку.- цей закон ще називається оптико-механічним принципом Мопертюї-Лагранжа.
Доведемо, що аналогічною властивістю володіє сімейство траєкторій (j) і сімейство поверхонь:
W=const (l)
де W - характеристична функція (h).
Для доказу перепишемо рівняння (j) і (1) у такий спосіб:
(n)
Рівняння дотичної до кривої, що описується рівняннями (m), має наступний вигляд:
(о)
Рівняння нормалі до поверхні, яка описується рівнянням (n),
(р)
Необхідно довести рівності
(q)
Обчисливши, знаходимо:
На підставі отриманих виражень переконуємося в справедливості рівностей (q).
Доведена тут аналогія руху матеріальної точки в поле сили ваги з хвильовим процесом має місце й у випадку руху вільної матеріальної точки в стаціонарному центрально-симетричному полі із силовою функцією U(r). У цій аналогії некласична механіка знайшла базу для ймовірнісного і статистичного тлумачення хвильової механіки.
Висновки
Варіаційні принципи механіки - це положення, що встановлюють властивості рухів, які фактично здійснюються під дією заданих сил, рух (стан рівноваги) механічної системи відрізняється від всіх її кінематично можливих рухів (станів), і які дозволяють отримати в якості наслідків рівння рухів або рівноваги системи..
Варіаційні принципи механіки визначають найбільш загальні закономірності механічних рухів і тому знаходять широке застосування в сучасній механіці і фізиці. Ряд цих принципів виражає властивості мехінічних систем у вигляді, який дозволяє розповсюдити принципи на інші області фізики.
Принципи, що були розглянуті в цій роботі, наведені в ній як універсальні методи вирішення визначених задач динаміки і статики, хоча кожний з них можна розглядати як аксіоматичне твердження, з якого логічно випливає зміст механіки при тих обмеженнях, при яких справедливий той чи інший принцип.
Література.
1. Бугаєнко Г.О. Курс теоретичної механіки. - Київ, 1968. - 367 с.
2. Кильчевский Н.А., Ремизова Н.И., Кильчевская Е.Н. Основы теоретической механики.- К, 1986. - 295 с.
3. Ландош К. Вариационные принципы механики. - М.: Мир, 1965.
Loading...

 
 

Цікаве