WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Варіаційні принципи теоретичної механіки - Курсова робота

Варіаційні принципи теоретичної механіки - Курсова робота

положеннями А і В за проміжок часу (t0, t1), розглядатимемо нескінченно близькі до дійсного можливі її рухи, які всі відбуваються між тими самими положеннями А та В, між якими відбувається дійсний рух, і за той самий проміжок часу (t0, t1).
Порівнювані з дійсним рухом уявні рухи вільної точки можна задати аналітичне так. Виберемо три довільні однозначні неперервні і диференційовані функції часу ?1(t), ?2(t), ?3(t), нескінченно малий параметр ? і вважатимемо, що уявлюваний рух точки визначається координатами
, (2)
де час t змінюється від моменту t0 до моменту t1. Швидкість точки в уявлюваному русі визначається трьома похідними по часу від координат
(3)
Щоб уявний рух відбувався протягом того самого проміжку часу і між тими самими положеннями А та В, що й дійсний рух матеріальної точки, функції ?1(t), ?2(t), ?3(t) треба підібрати так, щоб вони перетворювались в нуль у початковий і кінцевий моменти часу, тобто при t = t0 і t =t1:
?1(t0)= ?2(t0)= ?3(t0)=0, ?1(t1)= ?2(t1)= ?3(t1)=0 (4)
При аналітичному визначенні уявних рухів ми здійснили малу зміну виду функцій x(f), y(t), z(t), які описують дійсний рух. Ця зміна, яка полягає в переході від функцій x(t), y(t), z(t) до нових функцій
що нескінченно мало відрізняються від старих функцій, називається варіюванням функцій x(t), y(t), z(t). Прирости функцій, що знаходяться в результаті варіювання, позначаються символом ? і називаються варіаціями функцій:
(5)
Користуючись поняттям варіації, можна стверджувати: якщо дійсний рух точки відбувається за законом x=x(t), y=y(t), z=z(t), то порівнювані з ним уявні кінематично можливі рухи відбуваються за законом
Оскільки вибір варіацій ?х, ?y, ?z довільний, то існує нескінченна множина уявних кінематично можливих рухів точки між заданими її положеннями.
1.2. Дійсний і уявні рухи для невільної матеріальної точки.
У випадку невільної матеріальної точки сформульовані вище в п.1.1. умови, які визначають клас кінематично можливих уявних рухів, слід доповнити ще однією: уявний рух точки повинен бути узгоджений з зв'язками, не повинен порушувати їх . Тому всі попередні результати справедливі і для руху невільної матеріальної точки, якщо тільки в рівняннях руху точки використано незалежні узагальнені координати, які позначимо q1, q2 (при одній ступені вільності матимемо лише одну координату q). У цьому випадку, якщо дійсний рух точки визначається незалежними координатами q1(t), q2(t) , то, ана-логічно до попереднього, уявний кінематично можливий її рух буде характеризуватись функціями
Варіації координат тут дорівнюють
У випадку однієї ступені вільності уявний рух визначається однією координатою . Варіація координати дорівнює
1.3. Дійсний і уявні рухи для механічної системи.
Випадок системи не відрізняється принципово від з'ясованого вище випадку однієї матеріальної точки. Нехай дійсний рух невільної голономної механічної системи з п ступенями вільності визначається п незалежними координатами qk(t), (k=1, 2, ..., п). Уявний кінематично можливий її рух визначатиметься варійованими координатами
, (6)
де ? - нескінченно малий параметр, a ?k(t)-довільні функції. Ці функції слід вибирати так, щоб вони перетворювались в нуль на кінцях часового інтервалу (t0, t1), протягом якого розглядається рух системи. Варіації координат системи тут дорівнюють .
Отже, поряд з дійсним рухом механічної системи, який відбувається між положеннями А і В за проміжок часу (t0, t1), розглядаються нескінченно близькі до дійсного кінематично можливі (уявні) її рухи, які всі відбуваються між тими самими положеннями А та В, між якими відбувається дійсний рух і за той самий проміжок часу (t0, t1) та узгоджені з зв'язками системи.
Уявні рухи, що задовольняють ці вимоги, називатимемо можливими в розумінні Остроградського.
Доведемо тепер властивість комутативності варіювання і диференціювання, яку будемо використовувати нижче при розгляді принципу. Перепишемо (6) у вигляді , і продиференціюємо по часу:
(7)
Але за своїм змістом ліва частина цієї рівності є варіацією функції , тобто це є . Отже, з (7) знаходимо
, (8)
що означає: операція диференціювання по незалежній змінній t і операція варіювання є комутативними.
1.4. Функція Лагранжа та її інтеграл у дійсному і уявному рухах.
Нехай при дійсному русі функція Лагранжа системи є L(q, ?q, t), а в уявному вона дорівнює , де
Розкладаючи в ряд Тейлора, знайдемо
(9)
Головна, лінійна відносно , частина приросту функції L називається першою варіацією цієї функції, вона позначається ?L і дорівнює
Інші доданки ряду (9), які згруповано за степенями ?, називаються, відповідно, другою, третьою і т. д. варіаціями функції L і позначаються так:
?2L, ?3L, ..., ?kL,...
Функцію Лагранжа (9) для уявного руху можна подати тепер як ряд
(10)
Ми дістали формулу, яка визначає функцію Лагранжа для уявного руху через функцію Лагранжа й її варіації в дійсному русі точки.
Щоб встановити аналогічну формулу для інтеграла від функції Лагранжа, помножимо ряд (10) на елементарний проміжок часу dt і проінтегруємо від моменту to до моменту t1. Матимемо:
(11)
Інтеграл
, (12)
аргументом якого є функція q(t), слід розглядати як фунаціонал .
У співвідношенні (11) інтеграл лівої частини рівності є функціонал, обчислений для довільного уявного руху. Перший інтеграл правої частини -той самий функціонал, обчис-лений для дійсного руху точки. Другий інтеграл правої частини у формулі (11) є головною, лінійною відносно ?q (відносно ?) частиною приросту цього функціоналу.
Головна, лінійна, частина приросту функціоналу називається першою його варіацією і позначається ?S або .
На підставі (11) і означення першої варіації функціоналу маємо:
, (13)
тобто операції інтегрування і варіювання комутативні (слід підкреслити, що доведена властивість справджується тільки за умови, що розглядаються уявні рухи у визначеному вище розумінні Остроградського, коли параметр t відіграє роль незалежної змінної).
Інші інтеграли правої частини формули (11) є послідовно так звані друга, третя і т. д. варіації функціоналу S, які позначаються так: ?2S,
?3S, ... . Тому ряд (11) можна переписати увигляді
(14)
або у вигляді приросту функціоналу
(15)
Розділ ІІ. Варіаційні принципи механіки
1.1 Принцип Остроградського-Гамільтона
Інтеграл із змінною верхньою границею
(16)
називається дією за Остроградським. Розмірність дії є Дж с, тобто вона така сама, як розмірність сталої Планка h, що характеризує елементарний "квант дії".
Принцип Остроградського - Гамільтона формулюється так:
Дійсний рух механічної системи з голономними в'язями відрізняється від усіх інших порівнюваних з ним кінематично можливих (у розумінні Остроградського) рухів тим, що для дійсного руху системи варіація дії за Остроградським, яку обчислено для довільного фіксованого проміжку часу, дорівнює нулю.
Принцип Остроградського - Гамільтона математично подається рівністю
(17)
Для доведення обчислимо варіацію дії:
(18)
Інтегруючи частинами, знайдемо:
(19)
Доданок - тут дорівнює нулю в початковий і кінцевий моменти часу, бо , а (кінцеві точки траєкторій не варіюються).
Підставляючи (19) в (18), дістанемо:
(20)
За рівнянням Лагранжа підінтегральна функція в (20) дорівнює нулю; тому ?S = 0. Справедливість принципу доведена.
Якщо для функціонала S виконана умова ?S = 0, то говорять, що значення S стаціонарне. Умова стаціонарності дії ?S = 0 вичерпно виражає закон руху механічної системи. Справді, вище показано, що з
Loading...

 
 

Цікаве