WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Високотемпературна зверхпровідність - Курсова робота

Високотемпературна зверхпровідність - Курсова робота

металізованої поверхні вимірювального резонатора, при цьому R0 = -X0.
З врахуванням (2.1.2) співвідношення для частоти (2.1.1) може бути представлено
(2.1.3)
де G - геометричний фактор для використовуваного типу коливань вимірювального резонатора,
(2.1.4)
к - коефіцієнт, фізичний зміст якого буде визначений далі.
Оскільки уявна частина в співвідношенні (2.1.3) визначає власну добротність вимірювального резонатора Q1, а дійсна - зміну його резонансної частоти в порівнянні 0 , то активна і реактивна компоненти поверхневого імпеданса ВТНП-матеріала вираховується по результатам вимірів добротностей і резонансних частот слідуючим чином:
(2.1.5)
де - різниця власних частот вимірювального і контрольного резонаторів ( всі стінки останнього виконані із металу з відомим імпедансом ); Q0 - добротність контрольного резонатора, в якій також враховані діелектричні втрати:
(2.1.6)
В відношені коефіцієнта к=к(1-Q0/Qd) необхідно замітити слідуюче: по-перше, цим коефіцієнтом визначається чутливість вимірювального резонатора к=( Q/Q)/( R/R), по-друге, згідно його визначенню (2.1.4), коефіцієнт к має слідуючий фізичний зміст: це відношення потужності втрат енергії в поверхні S1, яку заміняємо досліджуваним матеріалом, до потужності втрат енергії у всьому резонаторі, за виключенням втрат в елементах зв'язку. Накінець, величина коефіцієнта впливає на похибку вимірювання імпедансу. Для його активної компоненти відносна похибка вимірів, яка отримується варіюванням (2.1.5), має вигляд:
(2.1.7)
При відомій величині поверхневого опору металу R0 похибка вимірювання Rs залежить від похибки добротності, а також від області зміни значень Rs. Наприклад, при Rs<2.2. Атестація плівок по НВЧ втратам.
Величина НВЧ поверхневого імпедансу Zs=Rs+jXs є одною з найважливіших характеристик матеріала провідників полоскових ліній. Основні методи вимірювання поверхневого імпедансу були розроблені раніше при дослідженні НТНП. З відкриттям ВТНП вони отримали подальший розвиток і пов'язані з пошуками шляхів застосування ВТНП в мікроелектроніці НВЧ.
Методики вимірювання поверхневого імпедансу повинні забеспечувати можливість дослідження в широких температурних (4.2 - 300К) і частотних діапазонах. Однак неможливо проводити дослідження поверхневого імпеданса відразу в широкому діапазоні частот без втрат точності. Оскільки основними є резонансні методи, то дослідження проводяться тільки на одній фіксованій резонансній частоті, що забеспечує їх високу точність.
Відомі також нерезонансні методики вимірювання імпедансу надпровідників, які основані на вимірюванні коефіцієнтів проходження і фази електромагнітної хвилі, яка пройшла через досліджувану плівку на діелектричній підкладці. Однак вони не забеспечують необхідну точність результатів.
Резонансні методи [9] визначення поверхневого імпеданса основані на вимірюванні добротності Q і резонансної частоти f0 вимірювального резонатора. При цьому вимірювання Q дають інформацію про активну частину поверхневого імпедансу, а вимірювання f0 - про його реактивну частину. Конструкція вимірювальних резонаторів визначається діапазоном довжин хвиль і геометрією досліджуваного зразка.
В сантиметровому і міліметровому діапазоні хвиль використовується метод об'ємного резонатора. Він, по суті, є універсальним методом вимірювання параметрів речовин в області НВЧ.
Відомо, що власна добротність об'ємного резонатора при заданій геометрії всеціло визначається вибраною коливальною модою і поверхневим опором його стінок. Якщо одну, декілька або всі стінки такого резонатора виконати із ВТНП, то, знаючи структуру поля в резонаторі і його геометрію, по даним вимірювань власної добротності Q0, можна визначити поверхневий опір Rs:
Q0= (2.2.1.)
де Q0- власна добротність коливань в резонаторі;
-магнітна проникність;
-кругова частота.
При вимірюванні поверхневого опору ВТНП в міліметровому діапазоні використовується циліндричний об'ємний резонатор з модою H011 , так як добротність коливань в ньому в порівнянні з добротністю коливань других типів велика. Це визначається особливістю структури поля, а також відсутністю втрат з аксіальними струмами на границі циліндричної поверхні резонатор-зразок ВТНП.
При розробці методик вимірювання поверхневого опору керамік і плівок ВТНП використовувався прохідний мідний слабозв'язаний резонатор з робочою модою ТЕ011. Другі моди подавлялись спеціальними методами. Як відомо, власна добротність коливань резонатора, виготовленого повністю з одного матеріала, з ТЕ011 модою може бути виражена у вигляді
(2.2.2)
або для резонатора, торцева стінка якого заміщена ВТНП-матеріалом.
(2.2.3)
де Rsm, Rsc - поверхневий опір метала і надпровідника відповідно;
r01=3.832;
a, b - геометричні коефіцієнти, які залежать від форми.
Із виразу (2.2.3) можна отримать
(2.2.4)
де Qm - власна добротність резонатора ,виконаного цілком із нормального метала;
В - коефіцієнт геометрії і частоти резонатора.
Виразимо Rsc із (2.2.4)
(2.2.5)
де Qс - власна добротність резонатора, виконаного із нормального метала, при заміні його робочої поверхні зразком досліджуваного надпровідника.
Таким чином, для вимірюванняповерхневого опору зразка ВТНП необхідно спочатку виконати калібровочні вимірювання поверхневого опору міді ( визначити температурний хід Qm i Rsm ), а потім, вимірюючи температрний хід добротності резонатора з зразком ВТНП, визначити величину Rsc.
2.3. Hадпровідні магніти. Розрахунок надпровідних соленоїдів.
Відкриття сплавів з високими критичними полями призвело до створення потужних соленоїдів і магнітів з надпровідними обмотками. Повна відсутність електричного опору відрізняє надпровідні магніти від пристроїв з нормальними обмотками для отримання магнітного поля.
Подібно до постійних магнітів надпровідні магніти є конденсаторами магнітної енергії, але набагато потужнішими. К.к.д. надпровідних магнітів може бути доведений до 100 %, в той час як к.к.д. звичайних магнітів при генерації магнітного поля в неперервному режимі прямує до нуля.
Звільнення від громіздких джерел живлення і систем водяного охолодження робить надпровідні магніти портативними і значно, що також дуже важливо, знижує іх собівартісь.
Надпровідний соленоїд відрізняється від звичайного, по - перше, тим, що електричний опір його обмотки рівний нулю, і, по -
Loading...

 
 

Цікаве