WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Дослідження впливу наповнювача на структурну організацію і міжфазну взаємодію в композиційних полімерних матеріалах - Курсова робота

Дослідження впливу наповнювача на структурну організацію і міжфазну взаємодію в композиційних полімерних матеріалах - Курсова робота

призводить до більш ефективної передачі тепла.
Для чистого ПВХ температурна залежність добре лписується емпіричним рівнянням:
= 0=1,36 104Т -0,2 10-6Т2, де
0 - коефіцієнт теплопровідності ПВХ, рівний 0,148 Вт/м К при Т = 290К.
Для розрахунку композицій використовують принцип узагальненої теплопровідності, враховуючи, що характерною особливістю структури таких систем являється неперервність полімерної матриці в довільному напрямку і дискретне розміщення частинок наповнювача, а також існування граничного шару на межі поділу фаз.
Під час визначення ефективного коефіцієнта теплопровідності випливає, що його значення залежить від коефіцієнта теплопровідності граничного шару[1], а саме для елементарної комірки рівний:
(6)
У формулі (6) фігурує ефективна товщина ГШ -, яка являється однією з кількісних мір взаємодії полімера з наповнювачем.
Визначення lгш дозволяє розрахувати об'ємний вміст граничного шару у гетерогенній полімерній системі. Розглянемо метод її визначення запропонований у [1].
В наповнених полімерних системах дисперсна частинка наповнювача оточена ГШ, що являє собою третю компоненту. В області вмісту наповнювача менш критичного ( н< кр) високодисперсний наповнювач не знаходиться в вузлах регулярної структури, займає випадкові положення в просторі. Хаотичне розміщення частинок наповнювача, в цьому випадку, важко визначити математично, як це можна зробити в кристалічній решітці. Однак, при н< кр наповнену систему можна як і раніше моделювати вигляді сукупності частинок наповнювача, розділених полімерним прошарком lп, на яких адсорбований ГШ товщиною lгш.. Таким чином, L= lп+ 2lгш., де L - відстань між двома частинками наповнювача.
В міру зростання вмісту наповнювача в системі все більша кількість полімерної матриці переходить в стан ГШ. Із рівняння адсорбційної ізотерми слідує, що маса ГШ m1 в розрахунку на полімер рівна:
m1= М(1 - е- N) (7)
де - коефіцієнт пропорційності, N - число частинок наповнювача, М - маса полімерної матриці.
Розглянувши ГШ, як сферичний прошарок товщини lгш отримаємо, що ефективний об'єм ГШ полімерної системи, що містить N частинок наповнювача, буде рівним:
, (8)
Із рівняння (7) маємо:
(9)
Коефіцієнт визначимо, як міру активності наповнювача, на основі стрибка теплоємності для наповненого і ненаповненого полімера:
(10)
При кр н трикомпонентна система виродиться в двохкомпонентну типу наповнювач-ГШ. Коли буде виконуватись умова кр = н, а це можливо для рівномірно диспергованих частинок в полімері, отримаємо залежність:
(11)
де п - густина полімерної матриці.
Підсумовуючи необхідно відмітити, що об'ємний вміст граничного шару на межі розподілу фаз полімера і наповнювача впливає на такі теплофізичні характеристики полімерної композиції, як ефективний коефіцієнт теплопровідності та інші.
Аналізуючи результати оцінки (табл. 2.3-1), отримані у [1] під час вимірювання гш можна зробити наступні висновки.
Табл. 0 1
Композиція об, % гш, Вт/м К Композиція об, % гш, Вт/м К
ПВХ+W 0,07 0,18 ПВХ+Cu 0,12 0,26
0,22 0,23 0,38 0,29
0,37 0,24 0,64 0,32
2,90 0,34 1,40 0,37
6,60 0,39 5,00 0,47
9,50 0,42 11,00 0,52
14,10 0,45 16,60 0,57
21,90 0,47 22,30 0,61
38,70 0,50 33,10 0,64
50,10 0,55 50,30 0,70
60,30 0,62 60,10 0,81
Отримані результати по визначення ефективного коефіцієнта теплопровідності граничних шарів ПВХ і ПВБ систем представлені в
табл. 2.3-1. Із аналізу якої слідує, що з підвищенням концентрації наповнювача в композиції спостерігається зміна гш. Так, для систем ПВХ по мірі збільшення вмісту W або Cu в композиції гш зростає в усьому діапазоні концентрацій наповнювача. При цьому гш залишається більшим ПВХ. Крім того, гш близький до ПВХ-систем У випадку ІІВБ-композицій при вмісті наповнювача меншому за критичний має місце екстремальне значення гш . Найбільш суттєві зміни гш спостерігаються при вмісті W чи Сu до 6 об. %. Саме для цієї області вмісту низькомолекулярних наповнювачів відмічається найбільш інтенсивна зміна ряду інших властивостей композицій. При подальшому збільшенні вмісту W і Сu в системі гш після досягнення екстремального значення має тенденцію до зменшення до області 15 у 20 об. % наповнювача. Наступне збільшення вмісту високодисперсного W чи Сu знову приводить до росту гш . Таку залежність можна пояснити "конкуруючими" ефектами, зв'язаними з зміцненням і розрихлюючою дією поверхні наповнювача на полімерну матрицю. Значить, чим більш активний наповнювач у відношенні до ПВХ чи ПВБ, тим більш інтенсивно, в області незначного вмісту (до 6 об. %), проявляється роль ГШ в формуванні теплофізичних властивостей композицій.
ВИСНОВКИ.
Введення наповнювача в полімер призводить до утворення речовин, властивості яких значно відрізняються від ненаповненого полімера. Наповнення полімера високодисперсними матеріалами характеризується виникненням фазового шару.
Граничний шар - це прошарок полімера, властивості якого змінюються під дією поверхні в порівнянні з властивостями полімера або наповнювача в об'ємі. Цей міжфазний шар характеризується деякими досить умовними параметрами: товщина граничного шару, коефіцієнт теплопровідності. Визначити ці параметри безпосередньо дуже складно, тому їх визначають на основі інших характеристик.
Встановлено, що існування межі поділу призводить до суттєвих змін релаксаційної поведінки полімера в міжфазному прошарку, зміні температур склування полімера і також інших властивостей полімерної системи.[3] Все це зв'язано з зміноюгустини молекулярної упаковки, а також з зменшенням рухливості сегментів полімерних ланцюгів і більших кінетичних елементів внаслідок їх взаємодії з твердою поверхнею.
Властивості гетерогенних полімерних систем визначаються кількістю полімера, який знаходиться в міжфазному прошарку. Кількісний зв'язок між властивостями міжфазного шару, об'ємним вмістом наповнювача і комплексом властивостей полімерних композицій потребує подальшого вивчення.
ВИКОРИСТАНА ЛІТЕРАТУРА.
1. Колупаєв Б.С., Ліпатов Ю.С., Бордюк М.А., Дем'янюк Б.П. Вивчення полімерних матеріалів в загальноосвітній школі: навчальний посібник. - Рівне, 1993 р., 92 с.
2. Колупаев Б.С. Релаксационные и термические свойства наполненных полимерных систем. - Львов: Вища школа, 1980.
3. Липатов Ю.С. Физико-химические основы наполнения полимеров. - М.: Химия, 1991.
4. Дулънев ?.H" Новиков В.В. Процессы переноса в неоднородных средах .- Л.: Энергоатомиздат, 1991.
5. Бордюк М.А. Волошин О.М., Колупаев Б.С., Липатов Ю.С.//УФЖ.- 1996- 41, № 4 -c.438-441.
6. Годовский Ю.К. Теплофизика полимеров,- М.: Химия, 1982.
7. Колупаев Б.С. Физико-химия полимеров,- Львов: Вища школа, 1976.
8. Колупаев Б.С; Демьянюк Б.П., Муха Б.И. Бордюк Н.А. //Композиц. полимер. материалы- 1984 - Вып. 23 - с.20-23.
9. Бордюк Н.А., Колупаее Б.С., Волошин О.М. // Физика и техника высоких давлений.-1995-№3-с.49-58.
10. Колупаєв Б.С., Бордюк М.А., Ліпатов Ю.С. //Доп. НАН України - 1995 - № 8 -с. 112-114.
11. Кравченко С. Мониторы завтрашнего дня.//Chip. №11 - 1999 р., ст.24-26.
Loading...

 
 

Цікаве