WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Вплив опромінення на властивості монокристалів сульфату кадмію . - Реферат

Вплив опромінення на властивості монокристалів сульфату кадмію . - Реферат

що свідчить про зменшення концентрації VCd, очевидно, за рахунок їхньої взаємодії з атомами індію.
Схему енергетичного положення рівнів повільних центрів рекомбінації в СdS:In, оцінених за максимумами ОГФ, подано на рис. 2б. Збудження дірок із основного стану з Еv+1,65 eB у валентну зону зумовлює максимум ОГФ 0,75 мкм. За максимум ОГФ з 2 1,03 мкм відповідальний перехід дірки у збуджений стан на центрі, який знаходиться на відстані 1,2 еВ від основного стану (рис. 2б). При високих температурах перехід дірки у збуджений стан супроводжується їх термічним дозбудженням у валентну зону. При низьких температурах, внаслідок зменшення ймовірності такого дозбудження, відбувається виморожування піка ОГФ з 2 1,03 мкм.
Подана вище схема гашення добре узгоджується з основним механізмом ОГФ, який реалізується в напівпровідниках групи АІІВVI [1]. Слід відмітити, що енергетичне положення комплексу дефектів у зоні, якими є центри повільної рекомбінації в СdS:In, визначається природою атомів або дефектів, які належать до його складу, кулонівською взаємодією між ними і релаксацією решітки навколо комплексу. Остання в напівпровідниках АІІВVІ може досягти значень до 1 еВ і бути домінуючою в порівнянні із кулонівською [13]. Розрахунок доводить, що енергетичне положення центрів повільної рекомбінації в СdS:In відрізняється від енергетичного положення таких у СdS на величину 0,35 еВ. Очевидно, енергія 0,35 еВ може бути зумовлена, в основному, релаксацією решітки навколо VCd при приєднанні Ini, який понижує симетрію дефекту.
Після опромінення домінуючою в легованих зразках при кімнатній температурі стає смуга люмінесценції з 710 нм, яка відсутня в неопромінених кристалах (рис. 3, крива 3). Це свідчить про утворення в СdS:In комплексів дефектів ( )0, які, згідно [2, 14], відповідальні за смугу люмінесценції з 710-720нм, і підтверджує факт високої рухливості вакансій кадмію в процесі опромінення, які взаємодіють не тільки з Ini, але також із радіаційно введеними вакансіями сірки (VS). У нелегованих, спеціально очищених СdS-монокристалах опромінення практично не змінює інтенсивності люмінесценції 720 нм [8], що свідчить про малу концентрацію радіаційно утворених VCd, які інтенсивно "анігілюють" з Cdi. Як зазначалося, в легованих зразках Cdi додатково взаємодіють з донорними центрами InCd, що призводить до зростання (в порівнянні з нелегованими) концентрації радіаційно утворених VCd.
При азотній температурі в опромінених зразках СdS:In розгоряються оранжева люмінесценція з 604 нм (яка відсутня в неопромінених зразках), зелена люмінесценція з 514 нм з розділеними фононними повтореннями, екситонна люмінесценція з 480 нм (рис. 4, крива 4) і нова інфрачервона смуга з 1,2 мкм, відсутня в неопромінених легованих зразках (в нелегованих CdS вона не проявляється як до, так і після опромінення [8]). Поява при 77 К о-, з- і екситонної люмінесценції (які гасились при кімнатній температурі) призводить до перерозподілу через ці центри основної частки рекомбінаційного потоку електронно-діркових пар, що, очевидно, зумовлює зменшення інтенсивності люмінесценції в інших областях спектра. Природа центрів о-люмінесценції в CdS до кінця не вияснена. Одні автори [5, 15] вважають, що до складу центрів о-люмінесценції входять мілкі донори (якими є, наприклад, Cdi) i VCd, інші [16, 17] основну роль в утворенні центрів о-люмінесценції відводять атомам кисню, які завжди присутні як неконтрольовані домішки в CdS. Можна припустити, що за о-люмінесценцію з 604 нм в опромінених СdS:In відповідальні Ini, витіснені з вузлів решітки міжвузловими (радіаційно утвореними) атомами кадмію і неконтрольвано присутні в кристалах CdS:In атомами кисню. За смуги люмінесценції з 1,2 мкм, очевидно, відповідальні випромінювальні рекомбінаційні переходи вільних електронів із дірками, захопленими повільними центрами рекомбінації в опромінених CdS:In-монокристалах.
Таким чином, нами вперше було досліджено вплив опромінення швидкими електронами з енергією Е=1,2 МеВ на електричні і фотоелектричні властивості монокристалів CdS, легованих In. Присутність атомів індію збільшує швидкість введення дефектів у кадмієвій підрешітці CdS в порівнянні з чистими зразками. На основі аналізу експериментальних результатів було зроблено припущення, що в легованих індієм монокристалах CdS має місце механізм дефектоутворення, який спостерігається в елементарних напівпровідниках, легованих деякими домішками. Радіаційно утворені міжвузлові атоми кадмію в СdS:In виштовхують із вузлів катіонної підрешітки атоми індію. Міжвузлові атоми індію, які виникають при цьому, частково дифундують у процесі опромінення на різні стоки, покращуючи структуру кристалу, і взаємодіють із вакансіями кадмію, утворюючи акцепторні комплекси, відповідальні за нові центри повільної рекомбінації.
Література
1. Бьюб Р. Фотопроводимость твердых тел. - М.:Иностр. лит. - 1962. - 558 с.
2. Лашкарев В.Е., Любченко А.В., Шейнкман М.К. Неравновесные процессы в фотопроводниках. - К.:Наук. думка. - 1981. - 264 с.
3. Физика и химия соединений AIIBVI / Под ред. С.А. Медведева. - М.: Мир. - 1970. - 624 с.
4. Kulp B.A., Kelley R.H. Displacement of the Silfur Atom in CdS by Electron Bombardement // J. Appl. Phys. - 1960. - V.31, - №6. - С. 1057-1061.
5. Ермолович И.Б., Любченко А.В., Шейкман М.К. Механизм зеленой краевой люминесценции в CdS-монокристаллах и параметры центров свечения // ФТП.- 1968.- Т. 2, в. 11.- С. 1639-1643.
6. Гурвич А.М., Ильина М.А. Интеркристаллические реакции и центры свечения в сульфидах цинка и кадмия. В сб: Проблемы физики соединений AIIBVI. - Вильнюс. - 1972. - Т. 2. - С. 325-329.
7. ГурвичА.М. Введение в физическую химию кристаллофосфоров. - М.: Высш. шк.,1982. - 376 с.
8. Давидюк Г.Є., Богданюк М.С., Шаварова А.П. Дозовая зависимость интенсивности зеленой люминесценции монокристаллов сульфида кадмия при облучении электронами с Е=1,2 МэВ // ФТП. - 1994. - Т. 28, в. 11. - С. 2056-2061.
9. Емцов В.В., Машовец Т.В. Примеси и точечные дефекты в полупроводниках. - М.: Радио, 1981. - 248 с.
10. Свойства неорганических соединений. Справочник. / Под ред. А.И. Ефимова и др. - Л.: Химия, 1983.- 392 с.
11. Птащенко А.А., Сердюк В.В., Кузьменко И.А. Инфракрасное гашение примесной фотопроводи-мости в сульфиде кадмия // ФТТ.- 1966.- №5.- С. 1623-1625.
12. Давидюк Г.Е., Богданюк Н.С., Мак В.Т., Божко В.В. Фотопроводимость облученных электрона-ми нелегированных и легированных медью монокристаллов CdS // Фотоэлектроника.- 1990.- В. З.- С. 7-12.
13. Уоткинс Дж. Дефекты решетки в соединениях АIIBVI. В кн.: Точечные дефекты в твердых телах. / Под. ред. Б.И. Болтакса и др.- М.: Мир, 1979.- 380 с.
14. Ермолович И.Б., Матвиевская Г.И., Пекарь Г.С., Шейнкман М.К. Люминесценция монокриста-ллов CdS, легированных различными донорами и акцепторами // Укр. ФЖ.- 1973.- Т. 18.- №5.- С. 733-741.
15. Ермолович И.Б., Матвиевская Г.И., Шейнкман М.К. О природе центров оранжевой люми-несценции в сульфиде кадмия // ФТТ.- 1975.- Т. 9.- В. 8.- С. 1620-1623.
16. Давидюк Г.Е., Манжара В.С., Богданюк Н.С., Шаварова А.П., Булатецкий В.В. Влияние элек-тронной и нейтронной радиации на спектры оранжевой люминесценции специально нелегированных и легированных медью монокристаллов сульфида кадмия // ФТП.- 1997.- Т. 31.- В. 4.- С. 390-392.
17. Морозова Н.К., Морозов А.В., Каретников И.А., Назарова Л.Д., Данилевич Н.Д. Влияние контролируемого изменения собственных точечных дефектов и кислорода на оптические свойства сульфида кадмия // ФТП. - 1994. - Т. 28. - В. 10. - С. 1699-1713.
Loading...

 
 

Цікаве