WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФізика → Магнітні властивості речовини - Урок

Магнітні властивості речовини - Урок


Урок з фізики
Магнітні властивості речовини
Урок роботи в базово-перехресних групах
Мета. Дати учням поняття про магнітні властивості речовин; розвивати уміння спостерігати, аналізувати, робити висновки; самостійно працювати з науково-популярною літературою; працювати в групах, слухати своїх колег, планувати свою роботу; виховувати в учнів толерантність, наполегливість у досягненні мети.
Тип уроку. Урок вивчення нового матеріалу.
Обладнання. Універсальний демонстраційний трансформатор, джерело постійної напруги (100 В, 10 А), проекційний ліхтар і екран (для демонстрування у тіньовій проекцій); залізний, алюмінієвий, вісмутовий (або з графіту) стержні, шкільний штатив, тонка капронова нитка, підвіс, з'єднувальні проводи, ключ, свічка.
Методичні поради. На даному уроці поряд зі звичними методами - експериментом і фронтальною бесідою - для вивчення нового матеріалу використовується метод базово-перехресних груп. Цей метод активізує пошукову діяльність учнів, залучає їх до самостійного отримання знань, сприяє організації їхньої роботи, змушує переглянути свої знання під час навчання інших. Для роботи за цим методом учитель створює базові групи чисельністю 4-6 учнів. Групи повинні бути гетерогенними, тобто включати учнів і різної статі, і різного рівня навчальних досягнень. У базових групах учні опрацьовують навчальний матеріал із певного питання. По завершенню цієї роботи вчитель формує нові групи (перехресні) таким чином, щоб у кожній групі було по одному учасникові з попередніх базових. На наступному етапі роботи кожен учасник нової групи навчає інших, передаючи їм знання, здобуті у базовій групі. (Базово-перехресні групи можна формувати, наприклад, за таким принципом: учні отримують картки із надписами AI, А2, A3, A4, А5, А6; Б1, Б2, БЗ, Б4, Б5, Б6; В1, В2,... Базові групи формуються за літерами, а перехресні - за цифрами.)
Хід уроку
1. Актуалізація опорних знань Учитель. Пригадаємо навчальний матеріал, засвоєний раніше:
1. Яка внутрішня будова речовини?
2. Яка будова атома?
3. Як рухаються електрони в атомі?
4. Що існує навколо будь-якого провідника зі струмом?
5. Що існує навколо рухомого електрона?
6. Що є силовою характеристикою магнітного поля?
7. Як взаємодіють два паралельні провідники зі струмом? Від чого залежить ця взаємодія?
8. Як визначити напрям вектора індукції магнітного поля струму?
Вивчення нового матеріалу
Учитель. Вивчаючи взаємодію провідників зі струмом, ми звертали увагу на те, що на магнітну взаємодію впливає середовище, в якому перебувають провідники. Окрім цього, із власного досвіду ви вже знаєте, що магнітне поле створюється не тільки електричним струмом, а й постійними магнітами, та й різні речовини по-різному поводять себе у зовнішньому магнітному полі. Ви спостерігали, що магніт притягує до себе залізні ошурки, але чомусь не діє на алюмінієві. У чому ж причина? Намагнічування речовин можна вивчати експериментально. Отож, експеримент.
(Учитель демонструє досліди, учні фіксують результати у робочих зошитах.)
Дослід 1. Замикається і розмикається коло первинної котушки трансформатора без осердя з джерелом живлення постійної напруги. Учні спостерігають незначні відхилення стрілки демонстраційного гальванометра, приєднаного до вторинної котушки. Після введення у котушки стального осердя дослід повторюється, і учні спостерігають значно більші відхилення стрілки.
Дослід 2. Залізний стержень (короткий шматок дроту), підвішений на тонкій капроновій нитці, розміщується у проміжку між полюсами електромагніту. Навіть за умови слабкого струму у колі обмоток залізний стержень повертається, розмішуючись вздовж магнітних силових ліній. Учні спостерігають, що вже за умови незначного струму залізний стержень притягується до одного з полюсів.
Дослід 3. На короткий кусок алюмінієвого стержня, підвішеного на нитці, постійний магніт не діє. Тоді цей стержень вміщується у проміжок між полюсами електромагніту. При вмиканні струму у колі та збільшенні його сили до 8-10 А кусок алюмінієвий стержень повертається і займає таке ж положення, як і залізний стержень. Відмінність від досліду 2 полягає у тому, що сила струму повинна бути значно більшою.
Дослід 4. Аналогічно до попереднього досліду, підвішується на нитці стержень із графіту або вісмуту. Цей стержень вноситься у магнітне поле і розташовують уздовж поля. Вмикають струм у колі обмоток. Якщо сила струму значна, учні спостерігають, що графіт повертається упоперек ліній магнітного поля і виштовхується із проміжку між полюсами.
Дослід 5. У проміжку між полюсами електромагніту запалюється свічка. Учні спостерігають, що полум'я свічки виштовхується магнітним полем.
Учитель. Отож, якого висновку можна дійти, враховуючи ці досліди?
Учні Речовини в магнітному полі намагнічуються, тобто створюють власне магнітне поле.
Учитель. Так. Результуюче магнітне поле у середовищі є сумою полів, створюваних струмом і намагніченим середовищем. Для характеристики магнітних властивостей речовини використовують поняття відносної магнітної
проникності речовини. Ця фізична величина показує, у скільки разів індукція магнітного поля у речовині більша за індукцію магнітного поля, створювану тим самим струмом у вакуумі. Відносна магнітна проникність речовини є безрозмірною величиною.
Причину намагнічення речовин зрозуміти неважко. Уперше її пояснив французький учений Ампер. Спостерігаючи повертання магнітної стрілки поблизу провідника зі струмом у дослідах Ерстеда, Ампер припустив, що магнетизм Землі спричинений струмами, які течуть усередині земної кулі. Він
вказує на те, що магнітні властивості тіла можна пояснити замкнутими електричними струмами, що циркулюють усередині нього.
Згідно з гіпотезою Ампера, всередині молекул і атомів циркулюють елементарні електричні струми. Вони утворюються внаслідок руху електронів у атомах.
Якщо внаслідок теплового руху молекул площини, у яких циркулюють ці струми, розміщені хаотично одна відносно одної (рис. 1), то дія струмів взаємно компенсується і жодних магнітних властивостей тіло не виявляє. У намагніченому стані елементарні струми в тілі орієнтовані так, що їхні дії додаються (рис. 2).
Рис. 1 Рис. 2
Отож, знаючи причину магнітних властивостей речовини, з'ясуємо, чому ж у дослідах, які ми спостерігали, різні речовини поводили себе по-різному.
(Робота у базових групах: учитель формує групи за літерами AI, A2, ..., роздає картки із відповідними завданнями.)
Учитель. Кожна група отримала довідниковий матеріал (див. додатки) та картку із запитаннями. Опрацювавши теоретичний матеріал, ви під час обговорення повинні дати відповіді на запитання, занотовуючи їх у зошит.
Орієнтовні запитання у-картках:
1. Що таке діа- (пара-, феро-) магнетик?
2. Яке значення u. для цього магнетика?
3. Як напрямлене магнітне поле всередині цього магнетика?
4. Як воновпливає на зовнішнє магнітне поле?
5. Яка речовина із спостережуваних у дослідах належить до кожної із груп магнетиків? Чому?
6. Які ще речовини належать до цієї групи?
7. Що таке точка Кюрі (для групи, яка вивчає феромагнетики)
(Робота в перехресних групах: після завершення роботи в базових групах
учитель формує перехресні групи за цифрами 1, 2, ..., дає для них відповідні завдання.)
Учитель. Завдання для нових груп: кожен учасник групи по черзі, використовуючи свої записи у зошитах, розповідає іншим учасникам про "свій" тип магнетика.
III. Закріплення матеріалу (Кожна з груп заповнює таблицю та розв'язує "якісні" задачі)
Задачі
1. Чому корпус компаса виготовляють із пластмаси, латуні або алюмінію, але не із заліза?
2. Чому не можна застосовувати електромагнітний кран для переміщення розпечених сталевих оцупків?
3. Як зміниться магнітне поле котушки, якщо всередину у неї вставити мідне осердя? Чому?
4. Чи не пригадаєте лихого вчинку Негоро
Loading...

 
 

Цікаве