WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаФілософія → Аксiоми, iтуїцiя, домовленiсть - Реферат

Аксiоми, iтуїцiя, домовленiсть - Реферат

-с.400].
Але, водночас, видатний математик не перебiльшує й можливостей iнтуїтивного методу: "Iнтуїцiя не спроможна дати нам нi строгостi, анi навiть достовiрностi - це помiтно все бiльше й бiльше". Тому iнтуїцiя й логiка у математицi повиннi взаємодоповнюватись: "...логiка й iнтуїцiя вiдiграють кожна свою необхiдну роль. Обидвi вони є неминучими. Логiка, яка лише одна й може дати достовiрнiсть, є знаряддям доведення; iнтуїцiя є знаряддям винахiдництва"[3. -с.401].
За Пуанкаре, розум - це слуга двох господарiв: логiка доводить, а iнтуїцiя творить. I та, й iнша є однаково необхiдними у математичних дослiдженнях. Але, все ж таки, сам Пуанкаре вiддає перевагу iнтуїцiї. Але це й не дивно, якщо врахувати, що саме iнтуїцiя багато разiв приводила його до нових вiдкриттiв, дозволяла вiдкрити новi можливостi. Про iнтуїтивний характер своєї творчостi говорив i вiн сам у знаменитiй доповiдi 1908 року на засiданнi Психологiчного товариства, яка увiйшла до книги "Наука i метод" у виглядi глави пiд назвод "Математична творчiсть". Тут вiн наводить приклади з своєї дiяльностi i говорить про те, що щаслива думка приходить до творця, як правило, не в той час, коли вiн трудиться над проблемою, а пiся того, коли вiн, не знайшовши рiшення, тимчасово вiдкладає задачу, забуває про неї. Iдея народжується або завдяки мiнiмальному натяку, або ж взагалi без будь-якого видимого поштовху, що свiдчить про пiдсвiдому роботу, яка проходить у мозку незалежно вiд волi та свiдомостi. Цi спостереження повнiстю спiвпадали з тим, що повiдомляли до нього Гельмгольц та Гаусс.
Як i Гельмгольц, Пуанкаре вiдзначає, що "цi раптовi озарiння не вiдбуваються iнакше, нiж пiсля декiлькох днiв вольових зусиль, що здавалися зовсiм безплiдними, так що весь пройдений шлях в кiнцевому рахунку уявлявся хибним. Але цi зусилля виявляються насправдi не такими вже й безплiдними, як це здавалось; це вони привели до руху машину безсвiдомого, яка без них не почала б рухатись i нiчого б не виробила"[3. -с.162]. Стрибок уяви лише завершує тривалi й впертi роздуми над проблемою.
Таким чином, в процесi творчої роботи Пуанкаре видiляє декiлька етапiв: пiсля деякого перiоду свiдомої працi i невдалих спроб досягти результату наступає бiльш чи менш тривала перерва, пiд час якої безсвiдома робота не припиняється, потiм раптово з'являється вирiшальна думка. Вiдомий голандський математик Е.Бет зформулював цю концепцiю Пуанкаре так: "Пiдготовка, iнкубацiя, натхнення i перевiрка"[Цит.за: 4. -с.236]. Процес iнкубацiї iдей або процес безсвiдомої роботи, як пiдкреслював Пуанкаре, є можливим або хоча б недаремним, якщо йому передує i за ним наступає перiод свiдомої роботи. Свiдома робота є особливо необхiдною для обробки результатiв натхнення.
Звiдси Пуанкаре задає таке питання: чи не випливає в такому випадку, що "я" пiдсвiдоме є чимось вищим, нiж "я" свiдоме? Це питання для нього невипадкове, адже саме до такого висновку прийшов Е.Бутру, фiлософ-спiрiтуалiст, який двома мiсяцями ранiше виступав на засiданнi Психологiчного твариства де здiйснював свiй виступ Аноi Пуанкаре. Пуанкаре стосовно висновкiв Бутру висловився категорично: "Що стосується мене, то я, зiзнаюсь, вiднiсся б до такої вiдповiдi далеко не спiвчутливо". Так само критично вiн оцiнив погляди Бутру i в своїй доповiдi "Еволюцiя законiв", проголошенiй на IY Мiжнародному конгресi.
Вiдкидаючи логiцизм, Пуанкаре у питаннi про природу арифметики, яка з другої половини ХIХ столiття розглядалась у якостi основи всiєї математики, запропонував свiй варiант, що грунтувався на кантiвських iдеях. У основоположному для арифметики принципi повної iндукцiї Пуанкаре вбачав апрiорне синтетичне судження, яке являє собою "тiльки доказ могутностi нашого розуму, впевненого у своїй здатностi, спроможностi уявляти собi ту чи iншу дiю такою, що повторюється до нескiнченностi, оскiльки вона виявилась можливою хоча б раз"[3. -с.166].
Боротьба Пуанкаре проти логiцизму мала ще один наслiдок. Вона була спрямована проти методологiї iндуктивiзму, який багато в чому базувався на аналiтичних iдеях логiцизму. Виступи Пуанкаре з критикою логiцизму, пiдтриманi Бутру, Мейєрсоном, Бреншвiгом мали визначне значення, оскiльки поставили перепону на шляху розповсюдження емпiризму у французькiй фiлософiї.
З критикою логiцизму був пов'язаний ще один аспект творчостi Пуанкаре. Це стосується канторової теорiї множин.
Як i багато iнших математикiв, Пуанкаре вважав несуперечливiсть найвищим критерiєм повноцiнностi математичної теорiї. Але на межi ХIХ i ХХ столiть у теорiї множин виявились суперечностi, до яких приводять цiлком вiрнi у логiчному вiдношеннi мiркування. Саме цi невирiшуванi парадокси й вiдвернули Пуанкаре вiд теорiї множин. Вiн ставив пiд сумнiв її право на iснування, поскiльки окремi її положення суперечили одне одному. Тому вiн виступив: проти застосовування "трансфiнiтних чисел", введених Кантором; з критикою аксiоматики Цермело; проти теорiї типiв Рассела; критикував непредикативнi визначення в математицi. На думку Пуанкаре, аксiома Цермело (1904 р.) являла собою апрiорне синтетичне судження, а тому всi спроби Рассела довести цю аксiому вiн вважав безнадiйними.
Пуанкаре також був iнiцiатором сучасної постановки проблеми непредикативностi. В якостi непредикативних означень вiн розглядав визначення, що побудованi за принципом зачарованого кола - коли мiркування, що веде до бажаного результату, само спирається на те, що з його допомогою треба визначити. Джерелом непредикативностi i всiх суперечностей у теорiї множин Пуанкаре вважав основне поняття цiєї теорiї - актуальну нескiнченнiсть. Тому, на його думку, це поняття слiд виключити з математичного вжитку, i це дасть змогу вийти з парадоксiв теорiї множин.
Такi самi зауваження можна навести i стосовно "герменевтичного кола", коли замiсть аксiоматичного введення роблять спробу предикацiї, тим самим потрапляючи у "зачароване коло" нескiнченого регресу предикатiв.
Перший такий парадокс виявив у 1897 роцi iталiйський математик Буралi-Фортi. Пiзнiше, у 1899 роцi, ще одна антиномiя була виявлена Кантором. Тодi цi парадокси ще не усвiдомлювалися фундаментально. Але нищiвного удару по теорiї множин завдало вiдкриття парадоксу Рассела, оскiльки вiн витiкав прямо з визначення множини, даного Кантором. Невдовзi були вiдкритi парадокс Рiшара (1905 р.), парадокс Греллiнга (1908 р.) та iншi. Виявилось, що в теорiї множин має мiсце навiть парадокс "брехун", що був вiдомий ще давнiм грекам.
Справаускладнювалась тим, що теорiя множин на той час складала пiдгрунтя практично всiєї математики. Виявлення парадоксiв показало, що фундамент цього пiдгрунтя сам є досить хитким. Самi основи математики й логiки виявились невирiшуваними суперечностями. Вiдбувся крах, здавалося б, непохитних понять та уявлень - тобто, iнакше кажучи, криза пiдвалин математики.
Ця криза рiзко загостриила боротьбу мiж такими течiями, як логiцизм, iнтуїцiонiзм i формалiзм. Виступи Пуанкаре проти логiцизму i припустимостi актуальної нескiнченностi, розробка ним вчення про математичну iнтуїцiю були одним з джерел виникнення iнтуїцiонiзму як одного з напрямкiв у обгрунтуваннi математики. Для прихильникiв iнтуїцiонiзму характерним є вiдкидання абстракцiї актуальної нескiнченностi i "чистих"
Loading...

 
 

Цікаве