WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаПедагогіка, Сценарії виховних заходів → Формули скороченого множення та узагальнення на основі квадрата двочлена - Урок

Формули скороченого множення та узагальнення на основі квадрата двочлена - Урок

n-4n=4-31, n+2=9+2=11.

-3n=-27,

n=9. Відповідь: 9;10;11.

Картка 2. Знайти три послідовних парних натуральних числа, якщо квадрат третього числа на 52 більший за добуток першого і другого.

І – 2n; ІІ –(2n+2); ІІІ – (2n+4).

(2n+4)2-52=2n(2n+2),

4n2+16n+16-52=4n2+4n, 2n=6;

16n-4n=52-16, 2n+2=8;

12n=36, 2n+4=12.

n=3. Відповідь: 6;8;10.

Картка 3. Знайти значення виразу (5a-10)2-(8-5a)2+4a, якщо а=6.

Якщо а=6, то (5a-10)2-(8-5a)2+4a=25a2-100a-64+80a-25a2+4a=100-16a=100-16 6=100-96=4.

Давайте підведемо підсумки. Так де застосовуються формули скороченого множення?

- При розв'язуванні рівнянь.

- При спрощенні виразів.

- При розв'язуванні задач, які приводять до рівнянь.

- Для швидкого та раціонального обчислення.

3. Геометрична інтерпретація

Ще Евклід знав прийом піднесення до квадрату суми двох доданків, який і ми сьогодні з вами вивчаємо. Правда трактував він це з геометричної точки зору.

a ab

ab b

a b

a (a+b)2=a2+2ab+b2.

b

Але чому тільки квадрат двох чисел? І чому тільки до квадрату? А чи не можна знайти метод піднесення до третього , четвертого і більш високих степенів суми трьох, чотирьох і більше доданків? Давайте спробуємо. В зошитах накресліть квадрат і спробуйте записати формулу квадрата суми трьох чисел.

а bc

а

b(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.

c

А давайте виведемо цю формулу з точки зору алгебри, кажуть, аналітично: (a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2= =a2+b2+c2+2ab+2ac+2cb.

Отже, квадрат тричлена дорівнює сумі квадратів всіх виразів і подвоєних добутків всіх можливих пар цих виразів.

4. Піднесення двочлена до степеня

Перейдемо ще до одного узагальнення, початок якому поклали стародавні вавілоняни.

Ви знаєте тотожність (a+b)2=a2+2ab+b2.

Запропонуйте спосіб піднесення двочлена до кубу. (a+b)3=(a+b)2(a+b)=(a2+2ab+b2)(a+b)=a3+a2b+2a2b+ab2+b3=

=a3+3a2b+3ab2+b3.

Що ви можете сказати за показники числа а? (спадають); числа b? (зростають).

А якщо піднесемо двочлен до четвертого степеня, які будуть показники степенів? (Розписати без коефіцієнтів:

(a+b)4= a4+ a3b+ a2b2+ ab3+ b4.)

Чого не вистачає в цій формулі? (Коефіцієнтів.) Спробуємо знайти їх.

Давайте запишемо ще два степені суми двох чисел – нульову і першу: (a+b)0=1;

(a+b)1=a+b.

Випишіть тільки коефіцієнти, причому розташуйте їх у вигляді трикутника: 1

  1. 1

1 2 1

1 3 3 1

Можна побачити, що "сторони" цього трикутника складені із одиниць, а числам, які стоять всередині трикутника, притаманна властивість. Яка? (Кожне число можна подати у вигляді суми чисел, які стоять над ним у попередньому ряду праворуч і ліворуч:

3=1+2; 2=1+1.)

Спробуйте дописати наступні рядки і виправити формулу четвертого степеня двочлена:

(a+b)4 =a4+4a3b+6a2b2+4ab3+b4.

Піднесіть двочлен до п'ятого степеня, використовуючи вказані властивості:

(a+b)5 =a5+5a4b+10a3b2+10a2b3+5ab4+b5.

Трикутник, складений за вказаним правилом, називають трикутником Паскаля, ім'ям відомого математика, фізика, філософа, письменника Блеза Паскаля (1623 - 1662), сучасника Декарта і Ферма.

Де ви чули це прізвище?

  • На уроках фізики: тиск вимірюється в паскалях.

  • На уроках інформатики: існує мова програмування Паскаль.

Це була дивовижна людина. 12-річним хлопчиком він доводить неймовірний факт: у будь-якому трикутнику сума всіх трьох кутів разом складає два прямі кути (зараз ми сказали б 180о). У 16 років він здійснив справжнє наукове дослідження: відкрив нові властивості конічних перерізів. У 23 роки він завершив виснажливу роботу над першою в світі арифметичною машиною, за допомогою якої можна було виконувати дію додавання та віднімання. Саме завдяки цьому в інформатиці одна з мов програмування названа його іменем. А крім цього роботи з фізики, комбінаторики, філософські роздуми та багато іншого.

Отже, яким чином ми узагальнили формулу квадрата двочлена?

( 1. Навчились виводити формулу квадрата многочлена.

  1. Навчились підносити двочлен до будь-якого натурального степеня. )

Як піднести двочлен до 3го, 4го, 5го степенів?

( Знайти коефіцієнти з трикутника Паскаля і використати властивості показників степенів кожного доданка. )

5.Застосування формул

Знайдіть значення виразу c4+4c3d+6c2d2+4cd3+d4, якщо с= 1,8; d=0,2.

Якщо c=1,8; d=0,2, то c4+4c3d+6c2d2+4cd3+d4= (c+d)4= =(1,8+0,2)4=24=16.

V. Домашнє завдання та підсумки уроку

Діти в зошитах записують завдання. Я в цей час виставляю оцінки, враховуючи жетони зароблені дітьми.

Домашнє завдання на переносній дошці :

Піднести до степеня: 1) (х+2)3;

2) (а-b)4;

Вивести формулу: (a+b+c+d)2.

Середній рівень – тільки написати формулу;

Достатній рівень – Одним способом;

Високий рівень – Двома способами.

(a+b)4=(a+b)2(a+b)2=(a2+2ab+b2)(a2+2ab+b2)=a4+2a3b+a2b2+2a3b+4a2b2+2ab3+a2b2+2ab3+b4=a4+4a3b+6a2b2+4ab3+b4.

Картка 1

Знайти три послідовних натуральних числа, якщо добуток першого і другого чисел на 31 менший за квадрат третього.

Картка 2

Знайти три послідовних парних натуральних числа, якщо квадрат третього числа на 52 більший за добуток першого і другого.

Картка 3

Знайти значення виразу (5a-10)2-(8-5a)2+4a, якщо а=6.

Картка 2

Знайти три послідовних парних натуральних числа, якщо квадрат третього числа на 52 більший за добуток першого і другого.

Картка 1

Знайти три послідовних натуральних числа, якщо добуток першого і другого чисел на 31 менший за квадрат третього.

Картка 1

Знайти три послідовних натуральних числа, якщо добуток першого і другого чисел на 31 менший за квадрат третього.

Картка 2

Знайти три послідовних парних натуральних числа, якщо квадрат третього числа на 52 більший за добуток першого і другого.

Картка 3

Знайти значення виразу (5a-10)2-(8-5a)2+4a, якщо а=6.

Картка 3

Знайти значення виразу (5a-10)2-(8-5a)2+4a, якщо а=6.


Loading...

 
 

Цікаве