WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаПедагогіка, Сценарії виховних заходів → Варіативні підручники в початкових класах - Реферат

Варіативні підручники в початкових класах - Реферат

Одним із перших загальних прийомів навчання розв'язування задач є вміння визначати в тексті задачі основні та другорядні слова, величини. У підручнику (с. 96) подаються зразки правильного читання тексту задачі. Діти читають задачі, виділяючи голосом підкреслені слова. Першокласники переконуються, що правильне читання задачі допомагає усвідомити зміст задачі.

Під час розв'язування задачі важливим є вміння зображувати задачу малюнком або виконати за текстом практичні дії з предметами. Навчанню цих прийомів присвячуються вправи на с. 97. За першою вправою діти вчаться співвідносити практичну дію з фішками (кульками) з відповідною задачею.

На с. 99 подані слова, які спрямовують міркування дитини на вивчення й усвідомлення запитання задач. Щоб ці міркування були більш осмисленими, пропонуються запитання задач, протилежні за своїм змістом (Скільки всього стало? і Скільки всього залишалося?).

Для правильного вибору дії розв'язування задачі доцільним і корисним прийомом є передбачення або прикидка результату. Мудра Сова звертає увагу дітей на те, що запитання перед розв'язуванням задачі "Більше чи менше число треба шукати?" може допомогти правильно розв'язати задачу (с. 105).

Прийом короткого запису задачі є надзвичайно ефективним і у процесі навчання учнів розв'язувати задачі. Цьому прийому присвячується с. 111 підручника. Для навчання учнів записувати задачі коротко пропонуються "зручні" калачі, у структурі яких виразно представлені основні опорні слова: було, витратили, залишилося; було, подарували, стало і т. п.

У процесі розв'язування задачі учневі доводиться кілька разів пересказувати її, причому це здійснюється щоразу по-різному. При переказі задачі учень намагається усвідомити життєву ситуацію, яка описана в задачі. На це спрямовані вказівки Мудрої Сови: "Прочитай спочатку умову задачі, а потім запитання. Розкажи, як ти розумієш задачу" (с. 118).

Описані вище загальні прийоми розв'язування задач доступні для шестирічних першокласників. За допомогою вчителя ці прийоми учні застосовують у процесі розбору задачі, вибору дій розв'язування та їх обґрунтування.

Крім загальних прийомів навчання учнів розв'язувати задачі в підручнику представлені інші вправи, спрямовані на усвідомлення змісту кожного типу арифметичних задач.

Для усвідомлення змісту задач на знаходження суми та різниці використано методичний прийом одночасного представлення даних задач. У процесі їх порівняння діти краще осмислюють залежності: скільки всього - знаходять більше число, розв'язують задачу додаванням; скільки залишилося - знаходять менше число, розв'язують задачу відніманням.

Задачі на збільшення (зменшення) числа на кілька одиниць пояснюються різними ілюстраціями відношень: збільшити на ... - це означає взяти стільки ж та ...; зменшити на ... - означає взяти стільки ж і без ... (с. 91, 97, 103).

Зміст задач на різницеве порівняння вводиться останнім. На с. 123 подаються текст задачі, малюнок і спосіб розв'язування задачі даного виду. Крім цих двох напрямів роботи над задачами, а саме: розкриття змісту задач певних типів і представлення загальних способів розв'язування задач, у підручнику містяться різноманітні вправи, спрямовані на осмислення залежностей між відомими та шуканими величинами, на усвідомлення тих чи інших аспектів, пов'язаних з аналізом і вивченням задач. Наприклад, дітям пропонується замінити слово "купили" так, щоб розв'язок задачі не змінився (с. 127), або треба доповнити задачу такими словами, щоб задача розв'язувалась дією віднімання (с. 135) і т. п.

Як бачимо, робота над задачами в новому підручнику представлена повніше та глибше. У розробці даного навчального матеріалу було використано передовий перспективний досвід учителів та нові досягнення методики викладання математики в початкових класах. Представлена в підручнику методика роботи над задачами в першому класі була апробована багатьма педагогами, які ознайомлювалися з нею на курсах післядипломного підвищення кваліфікації вчителів при Київському міському педагогічному університеті ім. Б. Грінченка. На прикладі аналізу представлення найважливіших тем програми 1-го класу в підручнику з математики авторів Л. П. Кочиної та Н. П. Листопад ми зосередили увагу на методичних особливостях розкриття програмних питань. За даним зразком педагоги можуть самостійно здійснити вивчення подібності й відмінності даного підручника з іншими та вибрати для роботи із шестилітками той посібник, який найбільше відповідатиме рівню підготовки учнів свого класу та власних інтересів.

Ми вкажемо в загальному плані відмінності та спільне в найбільш поширених у використанні, це підручник даних авторів та автора М. В. Богдановича не лише в 1-му класі, а й для всього комплекту підручників.

Організаційні підходи до розробки підручників

Спільне: обидва варіанти підручників розроблено до чинного початкового курсу математики, що не вимагатиме ґрунтовної перепідготовки педагогів до навчання за тим чи іншим підручником.

Відмінне:

1) Розподіл навчального матеріалу за роками навчання, що вимагає враховувати такі умови при виборі комплекту:

Перший варіант (автори Л. П. Кочина та Н. П. Листопад) - передбачає плавний, поступовий перехід від дошкільного до навчання в 1-му класі, протягом якого відбувається певне вирівнювання підготовки учнів до навчання. Даний принцип застосовується і в наступних класах.

Отже, підручник доцільно та успішно можна використовувати в масовій практиці як у сільській, так і в міській місцевості.

Другий варіант (автор М. В. Богданович) - підручники ускладнені; у 1-му класі прискорене вивчення математичних понять не внесено в навчальний матеріал, який в попередньому підручнику вивчається в 2-му класі.

Отже, за підручником успішно можуть навчатися діти, які добре підготовлені до школи, або в школах, де проводиться відбір учнів (ліцеї, гімназії).

2) Методичні концепції розкриття математичного змісту.

У підручниках використані різні методичні підходи до розкриття багатьох програмних питань, упроваджена різна система вправ як для сприймання нового матеріалу, так і для повторення та узагальнення знань і формування вмінь і навичок.

Учитель має змогу вибрати ту методичну систему розкриття математичних понять, яка, на його думку, більше відповідає різним факторам: підготовці самого вчителя, учнів даного класу, навчально-методичного забезпечення тощо.

3) Дидактичні функції підручників:

Перший варіант (автори Л. П. Кочина та Н. П. Листопад) - спрямованість на формування загальнонавчальних умінь; дедуктивний шлях організації навчання тощо.

Другий варіант (автор М. В. Богданович) - індуктивний шлях організації навчання; забезпечення розвивального аспекту за допомогою окремих спеціально підібраних вправ тощо.

Висновок: різні дидактичні функції підручників забезпечують варіативність навчання.

4) Засоби навчання: ілюстрації, таблиці, схеми тощо.

Перший варіант (автори Л. П. Кочина та Н. П. Листопад) - спрямованість не лише на унаочнення, а й на визначення способів такого унаочнення та для узагальнення знань тощо.

Другий варіант (автор М. В. Богданович) - унаочнення математичних понять.

Висновок: різні засоби навчання забезпечуватимуть доцільний вибір педагогами підручника з урахуванням розвитку абстрактного мислення учнів даного класу.

Загальний висновок: варіативні підручники збагачують методику викладання математики в початкових класах, урізноманітнюють шкільну практику навчання молодших школярів, дозволяють здійснювати диференційований підхід до навчання на рівні масового навчання в початкових класах.

У підручнику "Математика. 1 клас" авторів Л. П. Кочиної та Н. П. Листопад здійснено новий підхід до побудови процесу опрацювання кожної теми. Передбачається така послідовність:

що нового вивчатимеш у новій темі? Що треба знати?

опрацювання змісту теми;

перевір себе!

Такий підхід забезпечуватиме формування в учнів усвідомлення процесу навчання, самоконтролю та самооцінки. Перша сторінка теми спрямовуватиме вчителя на розробку такого уроку, на якому в узагальненому вигляді проводитиметься огляд основних питань нової теми та розкриватимуться вимоги до кінцевих результатів навчання.

Loading...

 
 

Цікаве