WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаПедагогіка, Сценарії виховних заходів → Про графічний спосіб розв’язання математичних задач - Реферат

Про графічний спосіб розв’язання математичних задач - Реферат

розв'язання задачі прикинути, у яких межах буде знаходитися відповідь (у складі залишиться більше ніж 200 мішків борошна, але менше ніж 250).
Тепер розглянемо можливі способи розв'язання задачі.
I спосіб
(706 + 138) - 604 = 240 (міш.)
Відповідь: залишилося 240 мішків борошна.
На основі графічного аналізу задачі одержуємо й інший спосіб розв'язання задачі: 706-(604-138) = = 706 - 466 = 240 (міш.)
Відповідь: залишилося 240 мішків борошна.
Постійно зростає роль графічної моделі як важливого резерву знаходження різних схованих залежностей при розв'язанні задач. На практиці навчання велику увагу приділяють розв'язанні таких задач різними способами і виявленню найбільш раціонального.
Наведемо кілька прикладів.
1. На змаганнях один хлопчик пробіг 320 м, інший на 130 м більше першого, а третій на 180 м менше ніж пробігли перший і другий разом. Скільки метрів пробіг третій хлопчик?
Це, по суті справи, геометрична задача, як і попередня, хоча за формою являє собою арифметичну.
I спосіб
1) 320 + 130 = 450 (м)
2) 450 + 320 = 770 (м)
3) 770 - 180 = 590 (м)
Відповідь: 590 м.
II спосіб
1) 320 + 130 = 450 (л)
2) 450 - 180 = 270 (м)
3) 320 + 270 = 590 (м)
Відповідь: 590 м.
III спосіб
1) 180 - 130 = 50 (м)
2) 320 - 50 = 270 (м)
3) 320 + 270 = 590 (м)
Відповідь: 590 м.
IV спосіб
1) 320 + 320 = 640 (м)
2) 180 - 30 = 50 (м)
3) 640 - 50 = 590 (м)
Відповідь: 590 м.
Четвертий спосіб розв'язання є різновидом третього.
Щоб прищепити дітям інтерес до розв'язання задач нестандартним способом, корисно використовувати прийом варіювання питання задачі. Сформулюємо питання до розглянутої вище задачі так: "На скількох метрів більше пробіг третій хлопчик, ніж другий?"
І спосіб
1) 320 + 130 = 450 (м)
2) 450 + 320 = 770 (м)
3) 770 - 180 = 590 (м)
4) 590 - 450 = 140 (м)
Відповідь: 140 м.
На основі виявлення схованих залежностей за допомогою графічної моделі приходимо до більш раціонального способу розв'язання: 320 - 180 = 140 (м). Розв'зуючи задачу іншим способом, замість чотирьох дій виконуємо тільки одну.
Ми розглянули різні способи розв'язання задач.
Наприклад:
1. Обчислити площу прямокутника АСЕК, за даними, нанесеним на креслення.
I спосіб
1) 12 - 5 = 7 (см)
2) 7 o 3 = 21 (кв. см)
Відповідь: 21 кв. см.
II спосіб
1) 12 o 3 = 36 (кв. см)
2) 5 o 3 = 15 (кв. см)
3) 36-15=21 (кв. см)
Відповідь: 21 кв. см.
2. Знайти площа прямокутника BCFK по наступним даним:
площа AMND=48 кв. см
площа ACFD=29 кв. см
площа BMNR-25 кв. см
I спосіб
1) 48 - 29 = 19 (кв. см) - площа CMNF
2) 25 - 19 = 6 (кв. см )- площа BCFK.
II спосіб
1) 48 - 25 = 23 (кв. см) - площа ABKD
2) 29 - 23 = 6 (кв. см) - площа BCFK
III спосіб
1) 29 + 25 = 54 (кв. см) - сума площ ACFD і BMNK
2) 54 - 48 = 6 (кв. см) - площа BCFK
Графічне розв'язання задач
ІІ клас
Розв'язати задачу - значить визначити значення невідомої величини, що задовольняє даній умові. Розрізняють два способи розв'язання задач - обчислювальний і графічний. У результаті застосування обчислювального методу шукані значення величин застосовуються у вигляді чисел. У результаті ж застосування графічного методу шукані значення величин застосовуються у вигляді геометричних образів: відрізків прямої, прямокутників, квадратів і т.д.
У методичній літературі розмежовують дві основні функції, що може виконувати креслення при розв'язанні арифметичних задач: застосування креслень як зорового матеріалу для полегшення логічних міркувань, проведених при рішенні задач звичайними методами; застосування креслень як особливого методу розв'язання.
Однак дотепер питання про графічний метод розв'язання арифметичних задач не знайшов належного застосування в шкільній практиці.
Ндалі ми намагатимемося розглянути другу функцію креслення, функцію креслення як особливого методу розв'язання задач, показати можливості розв'язання задач графічним способом у II класі і розкрити практичне значення графічного способу розв'язання задач. Якщо основна цінність першої функції креслення полягає в тому, що графічний запис умови задач є одним з ефективних методичних прийомів вироблення наочного представлення про математичну структуру задачі, те графічний метод розв'язання задачі - важливий засіб, за допомогою якого учні можуть не тільки уявити собі наочна умова задачі, але і її розв'язання.
Графічний метод дає можливість більш тісно встановити зв'язок між арифметичним і геометричним матеріалами, розвити функціональне мислення дітей.
Варто помітити, що завдяки застосуванню графічного методу в початковій школі можна скоротити час, протягом якого учень навчиться розв'язувати різні практичні задачі. У той же час уміння графічно розв'язувати задачу - це важливе політехнічне уміння - ще не виховується в учнів.
Основою для графічного розв'язання арифметичних задач є те, що "на безлічі відрізків прямої, як і на безлічі прямокутників з рівними сторонами, визначені операції додавання і множення на невід'ємне число, тобто операції, подібні з арифметичними діями додавання і множення невід'мних чисел".
До графічного розв'язання задач учні приходять не відразу. У I класі діти учаться графічно за допомогою прямокутних смужок і відрізків зображувати числа, їхню суму і різницю, умову задачі.
Деякі з таких вправ описані в ряді статей, опублікованих у журналі "Початкова школа". Множення в II класі, є власне кажучи окремий випадок суми декількох додатків що складаються, тільки доданки в цьому випадку однакові. Зміст множення тому близько підходить до змісту додавання. При підготовці до вивчення множення учням для виконання пропонувалися вправи, де поряд з розташуванням суми неоднакових доданків давалися і завдання на розташування суми рівних доданків.
Зазначалося, що при додаванні рівних чисел смужки, що зображують геометричні образи доданків, зручніше зображувати не в один ряд, а стовпчиком.
Так, поряд з такою формою зображення пропонувалася й інша. З'ясовувалося, що множене вказує на число кліток у горизонтальному ряді, а множник - число таких рядів.
Набуті в такий спосіб уміння використовувалися при розв'язанні перших задач на множення - задач на розкриття конкретного змісту множення. Розглядалася, наприклад, задача: "Хлопчик обвів 3 ряди кліток, по 4 клітки в кожнім ряді. Скільки усього клітокобвів хлопчик?" Аналізуючи умову задачі, учні одержували таке креслення.
Для розкриття конкретного змісту ділення розглядалися, наприклад, такі задачі:
1. Задача на ділення числа на рівні частини: "Учню треба обвести 6 клітинок у двох рівних рядах. По скільки клітинок треба обвести у кожному ряді?" Міркування. Обведемо по одній клітинці у кожному ряді, всього 2 клітинки, потім ще по одній клітинці у кожному ряді, всього 4 клітинки, і, нарешті, ще по одній клітинці в кожному ряді, всього 6 клітинок. У результаті виходить креслення, на якому показується ділене, дільник, частка.
2. Задача на ділення на вміщення числа по змісту: "Учню треба обвести 6 клітинок, по 2 клітинки в кожнім ряді. Скільки вийде рядів?" Міркування. Обведемо 2 клітинки, у першому ряді всього 2 клітинки; обведемо ще 2 клітинки, всього 4 клітинки в двох рядах; обведемо ще 2 клітинки, всього
Loading...

 
 

Цікаве