WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Багатовимірні випадкові величини. система двох випадкових величин - Реферат

Багатовимірні випадкові величини. система двох випадкових величин - Реферат

Реферат на тему:

Багатовимірні випадкові величини. система двох випадкових величин

На одному й тому самому просторі елементарних подій  можна визначити не одну, а кілька випадкових величин. Така потреба постає, наприклад, коли досліджуваний об'єкт характеризується кількома випадковими параметрами. Так, у разі виготовлення валів такі їх параметри, як діаметр, довжина, овальність є випадковими величинами, значення яких наперед не можна передбачити. Або, скажімо, структура витрат випадково взятої окремої сім'ї на їжу, одяг, взуття, транспорт, задоволення духовних потреб також є випадковими величинами, визначеними на одному й тому самому просторі елементарних подій.

На багатовимірні випадкові величини поширюються майже без змін основні означення, які були розглянуті для одновимірної випадкової величини.

Означення. Одночасна поява внаслідок проведення експерименту n випадкових величин (X1, X2, ..., Xn) з певною ймовірністю являє собою n-вимірну випадкову величину, яку називають також системоюnвипадкових величин, або n-вимірним випадковим вектором.

1. Система двох дискретних випадкових величин (X, Y) та їх числові характеристики

Законом розподілу двох дискретних випадкових величин називають перелік можливих значень Y = yi , X = xj та відповідних їм імовірностей спільної появи.

У табличній формі цей закон має такий вигляд:

X= xj

Y = yi

x1

x2

x3

...

xm

pyi

y1

p11

p12

p13

p1m

py1

y2

p21

p22

p23

p2m

py2

y3

p31

p32

p33

p3m

py3

...

...

...

...

...

...

...

yk

pk1

pk2

pk3

...

pkm

pym

pxj

px1

px2

px3

...

pxm

Тут використано такі позначення

Умова нормування має такий вигляд:

(108)

2. Основні числові характеристики для випадкових величин Х, Y,що утворюють систему (Х, Y)

(109)

(110)

(111)

(112)

= (113)

(114)

3. Кореляційний момент.Коефіцієнт кореляціїта його властивості

Під час вивчення системи двох і більше випадкових величин доводиться з'ясовувати наявність зв'язку між цими величинами та його характер. З відповідною метою застосовують так званий кореляційний момент:

(115)

У разі Κху= 0 зв'язок між величинами Х та Y, що належать системі (Х, Y), відсутній. Коли Κху  0, то між відповідними Х і Y кореляційний зв'язок існує.

Тісноту кореляційного зв'язку характеризує коефіцієнт кореляції:

(116)

, або .

Отже, якщо випадкові величини Х та Y є незалежними, то Κху = 0 і rху= 0. Рівність нулеві rху є необхідною, але не достатньою умовою незалежності випадкових величин.

Справді, може існувати система залежних випадкових величин, в якої коефіцієнт кореляції дорівнює нулю. Прикладом такої системи є система двох випадкових величин (X, Y), яка рівномірно розподілена всередині кола радіусом R із центром у початку координат. Дві випадкові величини Х і Y називають некорельованими, якщо rху= 0, і корельованими, якщо rху  0.

Отже, якщо Х і Y незалежні, то вони будуть і некорельованими. Але з некорельованості випадкових величин у загальному випадку не випливає їх незалежність.

Приклад 1. Задано закон розподілу системи двох дискретних випадкових величин (X, Y):

Х= хj

Y = yi

5,2

10,2

15,2

Pyi

2,4

0,1a

2a

0,9a

4,4

2a

0,2a

1,8a

6,4

1,9a

0,8a

0,3a

Pxj

Знайти а. Обчислити M (X); D (X);  (X); M (Y); D (Y);  (Y); Kху; rху; P (2,4  Y < 6,4; 5,2 < X  15,2).

Розв'язання.

Скориставшись умовою нормування (108), дістанемо:

Зі знайденим а закон системи набирає такого вигляду:

Х= хj

Y = yi

5,2

10,2

15,2

Pyi

2,4

0,01

0,2

0,09

0,3

4,4

0,2

0,02

0,18

0,4

6,4

0,19

0,08

0,03

0,3

Pxj

0,4

0,3

0,3

Основні числові характеристики обчислюємо за формулами (109) — (116):

Kху = М (XY) — М (X) М (Y) = 40,28 – 9,7  4,4 = 40,28 – 42,68 = 1,4.

Оскільки Κху > 0, то між відповідними величинами існує кореляційний зв'язок. Для вимірювання тісноти кореляційного зв'язку обчислимо коефіцієнт кореляції

Остаточно маємо:

p(2,4  Y < 6,4; 5,2 < X  15,2) = 0,2 + 0,02 + 0,09 + 0,18 = 0,31.

4. Умовні закони розподілу системидвох дискретних випадкових величинта їх числові характеристики

Умовним законом розподілу дискретної випадкової величини Х при фіксованому значенні Y = yi називається перелік можливих значень випадкової величини Х = хi та відповідних їм умовних імовірностей, обчислених при фіксованому значенні Y = yi.

У табличній формі запису умовний закон Х / Y = yi має такийвигляд:

X = x j

x1

x2

x3

...

xm

Pi1 / Py1

Pi2 / Py2

Pi3 / Py3

...

Pim/ Pym

При цьому має виконуватись умова нормування:

Числові характеристики для цього закону називають умовними.

Умовне математичне сподівання

(117)

Умовна дисперсія і середнє квадратичне відхилення обчислюються відповідно за формулами

; (118)

. (119)

Умовним законом розподілу випадкової величини Y при фіксованому значенні Х = хі називається перелік можливих значень випадкової величини Y = уj і відповідних їм умовних імовірностей, обчислених при фіксованому значенні Х = хі.

У табличній формі запису умовний закон має такий вигляд:

Y = у j

y1

y2

y3

...

ym

P1j/ Pх1

P2j/ Рх2

P3j/ Px3

...

Pmj / Pxm

Loading...

 
 

Цікаве