WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Залежні та незалежні випадкові події. умовна ймовірність, формули мно-ження ймовірностей - Реферат

Залежні та незалежні випадкові події. умовна ймовірність, формули мно-ження ймовірностей - Реферат

Приклад 1. Прилад складається з чотирьох елементів, що працюють незалежно один від одного. Імовірність того, що перший елемент не вийде з ладу під час роботи приладу, є величиною сталою і дорівнює 0,95. Для другого, третього і четвертого елементів ця ймовірність дорівнює відповідно 0,9; 0,85; 0,8.

Яка ймовірність того, що під час роботи приладу з ладу не вийде хоча б один елемент?

Розв'язання. Нехай p1 = 0,95 — імовірність того, що перший елемент не вийде з ладу. Для другого, третього та четвертого елементів ця ймовірність становитиме відповідно p2 = 0,9; p3 = 0,85; p4 = 0,8. Імовірність того, що ці елементи вийдуть із ладу, дорівнюватиме відповідно:

q1 = 1 – p1 = 1 – 0,95 = 0,05;

q2 = 1 – p2 = 1 – 0,9 = 0,1;

q3 = 1 – p3 = 1 – 0,85 = 0,15;

q4 = 1 – p4 = 1 – 0,8 = 0,2.

На підставі (23) маємо:

Р(С) = 1 – q1 q2 q3 q4 = 1 – 0,05  0,1  0,15  0,2 = 1 – 0,00015 = 0,99985.

Приклад 2. Гральний кубик підкидається чотири рази. Чому дорівнює ймовірність того, що цифра 3 з'явиться при цьому хоча б один раз?

Розв'язання. Імовірність того, що при одному підкиданні з'явиться цифра 3, дорівнює . Тоді q = 1 – p = 1 – .

Згідно з (24) дістанемо:

Р(С) = 1 – q4 = .

6. Використання формул теорії ймовірностей для оцінювання надійності роботи простих систем

Оцінити надійність роботи системи, елементи якої з'єднані за схемою, наведеною на рис. 7.

Рис. 7

При цьому відомі ймовірності безвідмовної роботи кожного елемента pі (і = 1,..., n).

Позначивши надійність системи через R, дістанемо

. (25)

Оцінити надійність роботи системи, елементи якої з'єднані за схемою, наведеною на рис. 8.

Рис. 8

При цьому відомі ймовірності безвідмовної роботи кожного елемента рі (і = 1,..., n):

. (26)

Приклад. Електричні лампочки з'єднані за схемами, наведеними на рис. 9 і 10.

Імовірність того, що електролампочка не перегорить при ввімкненні в електромережу наведених схем, є величиною сталою і дорівнює рі = 0,8.

Яка ймовірність того, що при ввімкненні в електромережу наведених схем у них буде електрострум?

Розв'язання. За відомим значенням рі знаходимо qі = 1 – рі = 1 – 0,8 == 0,2 (і = 1, 2, 3, 4).

а) R = ;

б) .

7. Формула повної ймовірності

У разі, коли випадкова подія А може відбутися лише за умо-ви, що відбудеться одна з несумісних випадкових подій Ві, які утворюють повну групу і між собою є попарно несумісними , імовірність події А обчислюється за формулою

, (27)

яка називається формулою повної ймовірності.

Випадкові події В1, В2, ... Вn називають гіпотезами.

Приклад 1. До складального цеху надходять деталі від трьох інших цехів. Від першого надходить 45% усіх деталей, від другого — 35% і від третього — 20%. Перший цех допускає в середньому 6% браку, другий — 2% і третій — 8%.

Яка ймовірність того, що до складального цеху надійде стандартна деталь?

Розв'язання. Позначимо через А появу стандартної деталі, В1 — деталь надійде від першого цеху, В2 — від другого, В3 — від третього. За умовою задачі:

Р(В1) = 0,45, Р(А / В1) = 0,94;

Р(В2) = 0,35, Р(А / В2) = 0,98;

Р(В3) = 0,2, Р(А / В3) = 0,92.

Згідно з (27) маємо:

Р (А) = Р (В1) Р (А / В1) + Р (В2) Р (А / В2) + Р (В3) Р (А / В3) == 0,45  0,94 + 0,35  0,98 + 0,2  0,92 = 0,423 + 0,343 + 0,184 = 0,95.

Приклад 2. У ящику міститься 11 однотипних деталей, із них 7 стандартних, а решта браковані. Із ящика навмання беруть три деталі й назад не повертають. Яка ймовірність після цього вийняти навмання з ящика стандартну деталь?

Розв'язання. Позначимо через А подію, яка полягає в тому, що з ящика вийнято навмання одну стандартну деталь після того, як з нього було взято три. Розглянемо такі події:

В1 — було взято три стандартні деталі;

В2 — дві стандартні і одну браковану;

В3 — одну стандартну і дві браковані;

В4 — три браковані.

Обчислимо ймовірності гіпотез, а також відповідні їм умовні ймовірності Р (А / Ві) (і = 1, 2, 3, 4).

Р (В1) = , ;

, ;

, ;

, .

Згідно з (27) дістанемо:

Р(А) = Р(В1) Р(А / В1) + Р(В2) Р(А / В2) + Р(В3) Р(А / В3) + Р(В4) Р(А / В4) =

.

Оскільки ,

то .

8.Формула Байєса

Застосовуючи формулу множення ймовірностей для залежних випадкових подій А, Ві (і =), дістаємо

Р(А) Р(Ві/ А) = Р (Ві) Р(А / Ві) →

→. (28)

Залежність (28) називається формулою Байєса. Її використовують для переоцінювання ймовірностей гіпотез Віза умови, що випадкова подія А здійсниться.

Після переоцінювання всіх гіпотез Ві маємо:

.

Згідно з формулою Байєса можна прийняти рішення, провівши експеримент. Але для цього необхідно, аби вибір тієї чи іншої гіпотези мав ґрунтовні підстави, тобто щоб унаслідок проведення експерименту ймовірність Р(Ві/ А) була близька до одиниці.

Приклад 1. Маємо три групи ящиків. До першої групи належить 5 ящиків, у кожному з яких 7 стандартних і 3 браковані однотипні вироби, до другої групи — 9 ящиків, у кожному з яких 5 стандартних і 5 бракованих виробів, а до третьої — 3 ящики, у кожному з яких 3 стандартні й 7 бракованих виробів. Із довільно вибраного ящика три навмання взяті вироби виявилися стандартними.

Яка ймовірність того, що вони були взяті з ящика, який належить третій групі?

Розв'язання. Позначимо В1, В2, В3 гіпотези про те, що навмання вибраний ящик належить відповідно першій, другій або третій групі. Обчислимо ймовірності цих гіпотез. Оскільки всього за умовою задачі 17 ящиків, то

; Р(В3) = .

Позначимо через А появу трьох стандартних виробів. Тоді відповідні умовні ймовірності:

.

За умовою задачі необхідно переоцінити ймовірність гіпотези В3. Використовуючи формулу (28), маємо:

.

Приклад 2. На склад надходять однотипні вироби з чотирьох заводів: 15% — із заводу № 1, 25% — із заводу № 2; 40% — із заводу № 3 і 20% — із заводу № 4.

Під час контролю продукції, яка надходить на склад, установлено, що в середньому брак становить для заводу № 1 — 3%, заводу № 2 — 5%, заводу № 3 — 8% і заводу № 4 — 1%.

Навмання взятий виріб зі складу виявився бракованим. Яка ймовірність того, що його виготовив завод №1?

Розв'язання. Позначимо В1 гіпотезу проте, що виріб був виготовлений заводом № 1, В2 — заводом № 2, В3 — заводом № 3 і В4 — заводом № 4. Ці гіпотези єдино можливі і несумісні. Нехай А — випадкова подія, що полягає в появі бракованого виробу.

За умовою задачі маємо:

Р(В1) = 0,15, Р(В2) = 0,25, Р(В3) = 0,4, Р(В4) = 0,2, Р(А/В1) = 0,03, Р(А/В2) = 0,05, Р(А/В3) = 0,08, Р(А/В4) = 0,01.

За формулою Байєса (28) переоцінюємо першу гіпотезу В1:

=.

ЛІТЕРАТУРА

  1. Вентцель Е. С., Овчаров Л. А. Теория вероятностей и ее инженерное приложение. — М.: Наука, 1988.

  2. Гнеденко Б. В. Курс теории вероятностей. — М.: Наука, 1961.

Loading...

 
 

Цікаве