WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Шпаргалка - Реферат

Шпаргалка - Реферат

Так, для загальної дисперсії виправлена дисперсія дорівнюватиме.

Виправлена дисперсія , що характеризує розсіювання всередині групи, зумовлене впливом випадкових факторів, обчислюється за формулою:,

де є числом ступенів свободи для , оскільки при цьому використовується р співвідношень при обчисленні групових середніх .ї

Виправлена дисперсія , що характеризує розсіювання групових середніх відносно загальної середньої , яке викликане впливом фактора на результат експерименту ознаки Х, обчислюється за формулою:

,

де — це число ступенів свободи для , оскільки групові середні варіюють відносно однієї загальної середньої .

62) Загальний метод перевірки впливу фактора на ознаку способом порівняння дисперсій. Завдання виявлення впливу фактора на наслідки експерименту полягає в порівнянні виправлених дисперсій , . І справді, якщо досліджуваний фактор не впливає на значення ознаки Х, то в цьому разі і можна розглядати як незалежні оцінки загальної дисперсії D. І навпаки, якщо відношення i істотне, то в цьому разі вибірки слід вважати здійсненими з різних сукупностей, тобто з сукупностей з різним рівнем впливу фактора.

Порівняння двох дисперсій ґрунтується на перевірці правильності нульової гіпотези: — про рівність дисперсій двох вибірок.

За статистичний критерій вибирається випадкова величина,

що має розподіл Фішера—Снедекора з , ступенями свободи.

За значеннями , , , знаходимо критичну точку (додаток 7).

Спостережуване значення критерію обчислюється за формулою

Якщо , то нульова гіпотеза про вплив фактора на результати досліджень відхиляється, а коли , то цим самим підтверджується вплив фактора на ознаку Х.

Результати спостережень та обчислення статистичних оцінок зручно подати в упорядкованому вигляді за допомогою табл. 2.

63) Двофакторний дисперсійний аналіз. Нехай необхідно визначити вплив двох факторів А і В на певну ознаку Х. Для цього необхідно, щоб дослід здійснювався при фіксованих рівнях факторів А і В, а також їх одночасній дії на ознаку. При цьому дослід здійснюватимемо n раз для кожного з рівнів факторів А і В.

Позначимо через конкретне значення ознаки Х, якого вона набуває при i-му експерименті, j-му рівні фактора A і k-му рівні фактора В.

Результат експерименту зручно подати у вигляді таблиці, яка поділена на блоки, в кожному з яких ураховується на певних рівнях факторів А і В їх вплив на конкретні значення ознаки

64)Функціональна ,статистична і кореляційна залежності.

Показником, що вимірює стохастичний зв'язок між змінними, є коефіцієнт кореляції, який свідчить з певною мірою ймовірності, наскільки зв'язок між змінними близький до строгої лінійної залежності.

За наявності кореляційного зв'язку між змінними необхідно виявити його форму функціональної залежності (лінійна чи нелінійна), а саме:;

;

Наведені можливі залежності між змінними X і Y називають функціями регресії. Форму зв'язку між змінними X і Y можна встановити, застосовуючи кореляційні поля, які зображені на рисунках

Для двовимірного статистичного розподілу вибірки ознак (Х, Y) поняття статистичної залежності між ознаками Х та Y має таке визначення:

статистичною залежністю Х від Y називають таку, за якої при зміні значень ознаки Y = yi змінюється умовний статистичний розподіл ознаки Х, статистичною залежністю ознаки Y від Х називають таку, за якої зі зміною значень ознаки X = xi змінюється умовний статистичний розподіл ознаки Y.

Між ознаками Х та Y може існувати статистична залежність і за відсутності кореляційної. Але коли існує кореляційна залежність між ознаками Х та Y, то обов'язково між ними існуватиме і статистична залежність

65) Рівняння лінійної регресії . Ураховуючи вплив на значення Y збурювальних випадкових факторів, лінійне рівняння зв'язку X і Y можна подати в такому вигляді:

,

де , є невідомі параметри регресії, є випадковою змінною, що характеризує відхилення y від гіпотетичної теоретичної регресії.

Отже, в рівнянні (485) значення "y" подається у вигляді суми двох частин: систематичної і випадкової . Параметри , є невідомими величинами, а є випадковою величиною, що має нормальний закон розподілу з числовими характеристиками: , . При цьому елементи послідовності є некорельованими

У результаті статистичних спостережень дослідник дістає характеристики для незалежної змінної х і відповідні значення залежної змінної у.

66) Вибірковий коефіцієнт кореляції

Рівняння лінійної парної регресії:

або

,

де і називають коефіцієнтом регресії.Для обчислення необхідно знайти

;

;

Як бачимо, коефіцієнт кореляції близький за своїм значенням до одиниці, що свідчить про те, що залежність між Х та Y є практично лінійною.

67) Довірчий інтервал для лінії регресії

Ураховуючи те, що і є випадковими величинами, то і лінійна функція регресії буде випадковою. Позначимо через значення ознаки Y, обчислимо за формулою

.

Тоді

.

Звідси дістали:

або

.Випадкова величина

має t-розподіл із ступенями свободи. Ураховуючи можна побудувати довірчий інтервал для лінійної парної функції регресії із заданою надійністю γ, а саме:

.

випливає

68)Множина регресії ,множинний коєфіцієнт кореляції та його властивості .

На практиці здебільшого залежна змінна пов'язана з впливом не одного, а кількох аргументів. У цьому разі регресію називають множинною. При цьому якщо аргументи в функції регресії в першій степені, то множинна регресія називається лінійною, у противному разі — множинною нелінійною регресією.

Довірчий інтервал для множинної лінійної регресії

Матриця Х містить m лінійно незалежних векторів-стовпців, а це означає, що ранг її дорівнюватиме m і визначник Отже, матриця має обернену.

Дисперсії статистичних оцінок визначають з допомогою кореляційної матриці для вектора

Коефіцієнт множинної регресіїТісноту між ознаками Y та X, де , вимірюють з допомогою коефіцієнта множинної кореляції R, що є узагальненням парного коефіцієнта кореляції rij і обчислюється за формулою

.

Чим ближче значення R до 1, тим краще вибрано функцію регресії

Нормування коефіцієнтів регресії

Множинна лінійна регресія дає змогу порівняти вплив на досліджуваний процес різних чинників. У загальному випадку змінні репрезентують чинники, що мають різні одиниці виміру (кілограми, гривні, метри тощо). Отже, для того щоб порівняти і з'ясувати відносну вагомість кожного з чинників, використовують так звані нормовані коефіцієнти регресії, які визначають за формулою

де — коефіцієнт регресії після нормування; — виправлене середнє квадратичне відхилення змінної — виправлене середнє квадратичне відхилення ознаки Y.

69) Нелінійна регресія.

Якщо в рівняння множинної регресії змінні входять як , то регресія називається нелінійною.

У загальному випадку нелінійна регресія записується в такому вигляді:

де параметри є сталими невідомими величинами, які підлягають статистичним оцінкам, а — випадкова величина, яка має нормальний закон розподілу з числовими характеристиками і при цьому випадкові величини між собою не корельовані. Реалізуючи вибірку обсягом n, згідно з (563), дістанемо систему нелінійних рівнянь виду:

Loading...

 
 

Цікаве