WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Шпаргалка - Реферат

Шпаргалка - Реферат

54) Критична область Множину  всіх можливих значень статистичного критерію K можна поділити на дві підмножини А і , які не перетинаються.. Сукупність значень статистичного критерію K А, за яких нульова гіпотеза не відхиляється, називають областю прийняття нульової гіпотези. Сукупність значень статистичного критерію K  , за яких нульова гіпотеза не приймається, називають критичною областю. Отже, А — область прийняття Н0, — критична область, де Н0 відхиляється. Точку або кілька точок, що поділяють множину  на підмножини А і , називають критичними і позначають через Kкр. Існують три види критичних областей: Якщо при K < Kкрнульова гіпотеза відхиляється, то в цьому разі ми маємо лівобічну критичну область, яку умовно можна зобразити (рис. 1).

Якщо при нульова гіпотеза відхиляється, то в цьому разі маємо правобічну критичнуобласть

Якщо ж при і при нульова гіпотеза відхиляється, то маємо двобічну критичнуобласть .

Лівобічна і правобічна області визначаються однією критичною точкою, двобічна критична область — двома критичними точками, симетричними відносно нуля.

55) Перевірка правельності нульової гіпотези про нормальний закон розподілу ознаки генеральної сукупності Для перевірки правильності Н0 задається так званий рівень значущості .

 — це мала ймовірність, якою наперед задаються. Вона може набувати значення = 0,005; 0,01; 0,001. В основу перевірки Н0 покладено принцип , тобто ймовірність того, що статистичний критерій потрапляє в критичну область , дорівнює малій імовірності . Якщо ж виявиться, що а ця подія малоймовірна і все ж відбулася, то немає підстав приймати нульову гіпотезу. Пропонується такий алгоритм перевірки правильності Н0:

1. Сформулювати Н0 й одночасно альтернативну гіпотезу Н.

2. Вибрати статистичний критерій, який відповідав би сформульованій нульовій гіпотезі.

3. Залежно від змісту нульової та альтернативної гіпотез будується правобічна, лівобічна або двобічна критична область, а саме: нехай , тоді, якщо

, то вибирається правобічна критична область, якщо

, то вибирається лівобічна критична область і коли

, то вибирається двобічна критична область.

4. Для побудови критичної області (лівобічної, правобічної чи двобічної) необхідно знайти критичні точки. За вибраним статистичним критерієм та рівнем значущості знаходяться критичні точки.

5. За результатами вибірки обчислюється спостережуване значення критерію .

6. Відхиляють чи приймають нульову гіпотезу на підставі таких міркувань: у разі, коли , а це є малоймовірною випадковою подією, і, незважаючи на це, вона відбулася, то в цьому разі Н0 відхиляється: для лівобічної критичної області ; для правобічної критичної області

для двобічної критичної області

або , ураховуючи ту обставину, що критичні точки і симетрично розташовані відносно нуля.

57) Критерій узгодженості Пірсона. Критерій узгодженості Пірсона є випадковою величиною, що має розподіл , який визначається за формулою і має k = q – m – 1 ступенів свободи, де q — число часткових інтервалів інтервального статистичного розподілу вибірки; m — число параметрів, якими визначається закон розподілу ймовірностей генеральної сукупності згідно з нульовою гіпотезою. Так, наприклад, для закону Пуассона, який характеризується одним параметром , m = 1, для нормального закону m = 2, оскільки цей закон визначається двома параметрами i . Якщо (усі емпіричні частоти збігаються з теоретичними), то , у противному разі . Визначивши при заданому рівні значущості  і числу ступенів свободи критичну точку , за таблицею (додаток 8) будується правобічна критична область. Якщо виявиться, що спостережуване значення критерію , то Н0 про закон розподілу ознаки генеральної сукупності відхиляється. У противному разі Н0 приймається.

58) Дисперсійний аналіз був створений спочатку для статистичної обробки агрономічних дослідів. В наш час його також використовують як в економічних експериментах, так і технічних, соціальних.

Сутність цього аналізу полягає в тому, що загальну дисперсію досліджуваної ознаки розділяють на окремі компоненти, які обумовлені впливом певних конкретних чинників. Істотність їх впливу на цю ознаку здійснюється методом дисперсійного аналізу.

Відповідно до дисперсійного аналізу будь-який його результат можна подати у вигляді суми певної кількості компонент. Так, наприклад, якщо досліджується вплив певного чинника на результат експерименту, то модель, що описує структуру останнього, можна подати так:

,на j-му рівні фактора. Під рівнем фактора розуміють певну його міру. Наприклад, якщо фактором є добрива, які вносяться в ґрунт з метою збільшення врожайності сільськогосподарської культури, то рівнем фактора в цьому разі є кількість добрива, що вноситься в ґрунт; — загальна середня величина ознаки Х; — ефект впливу фактора на значення ознаки Х на j-му рівні; — випадкова компонента, що впливає на значення ознаки Х в i-му експерименті на j-му рівні.

При цьому і як випадковi величини мають закон розподілу ймовірностей і між собою незалежні ().

У разі проведення дисперсійного аналізу досліджуваний масив даних, одержаних під час експерименту, поділяють на певні групи, які різняться дією на результати експерименту певних рівнів факторів.

Вважається, що досліджувана ознака має нормальний закон розподілу, а дисперсії в кожній окремій групі здобутих значень ознаки однакові. Ці припущення необхідно перевірити.

59) Однофакторний аналіз. Нехай потрібно дослідити вплив на ознаку Х певного одного фактора. Результати експерименту ділять на певне число груп, які відрізняються між собою ступенем дії фактора.

Для зручності в проведенні необхідних обчислень результати експерименту зводять в спеціальну таблицю:

Ступінь впливу фактора (групи)

Спостережуване значення ознаки Х

Групові середні

Загальна середня

1

,

2

3

....

...

...

р

60) Таблиця результатів спостережень

Ступінь впливу фактора (групи)

Спостережуване значення ознаки Х

Групові середні

Загальна середня

1

,

2

3

....

...

...

р

61) Загальна дисперсія ,міжгрупова та внутрішнлогрупова дисперсія

Відповідно до моделі однофакторного дисперсійного аналізу необхідно визначити дві дисперсії, а саме: міжгрупову (дисперсію групових середніх), зумовлену впливом досліджуваного фактора на ознаку Х, і внутрішньогрупову, зумовлену впливом інших випадкових факторів.

Загальна дисперсія розглядається як сума квадратів відхилень:

.

оді поділ загальної дисперсії на компоненти здійснюється так:

оскільки

Таким чином, дістаємо:

Для того щоб мати виправлені дисперсії, необхідно кожну зі здобутих сум поділити на число ступенів свободи.

Loading...

 
 

Цікаве