WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Шпаргалка - Реферат

Шпаргалка - Реферат

Співвідношення між значеннями випадкової величини і їхніми ймовірностями називається законом розподілу випадкової величини.

Для дискретних випадкових величин закони розподілу можуть задаватися множиною значень, що їх набуває випадкова величина, і ймовірностями цих значень.

Якщо то або, якщо величина набуває зліченної множини значень, то Закони розподілу дискретних випадкових величин задаються у табличній формі (подаються значення випадкової величини і їхні ймовірності), аналітичній (наводиться формула, за якою обчислюються ймовірності для заданих значень випадкової величини), графічній (у прямокутній системі координат задається набір точок сполучивши точки відрізками прямих, дістанемо многокутник розподілу ймовірностей).

13. Функція розподілуУніверсальним способом задання закону розподілу ймовірностей є функція розподілуЦю функцію можна тлумачити так:унаслідок експерименту випадкова величина може набути значення,меншого за х. Для дискретних величин

Функція розподілу — неспадна, неперервна зліва,

Для довільних

Якщо Х — неперервна випадкова величина, то — неперервна і диференційована; її похідна називається щільністю розподілу ймовірностей. При цьому — невід'ємна функція, для якої

Властивості:

1.0F(x)1

2.F(x) є неспадною функцією,а саме F(x2)F(x1), якщо х2х1

14,Математичним сподіванням, або середнім значенням, МХ випадкової величини, називається ряд (для дискретних випадкових величин) і інтеграл (для неперервних випадкових величин), якщо вони абсолютно збіжні. Математичне сподівання має такі властивості:

  1. (С — стала);

  2. ;

  3. якщо Х і Y — незалежні випадкові величини.

Дисперсія (позначається через ) випадкової величини Х визначається за формулою:

Основні властивості дисперсії:

  1. якщо випадкові величини незалежні.

Середнє квадратичне відхилення (позначається літерою ) є квадратним коренем із дисперсії.

Якщо від випадкової величини віднімемо її математичне сподівання, то дістанемо центровану випадкову величину, математичне сподівання якої дорівнює нулю. Ділення випадкової величини на її середнє квадратичне відхилення називається нормуванням цієї випадкової величини.

Випадкова величина має нульове математичне сподівання й одиничну дисперсію.

Початковий, центральний і абсолютний початковий моменти порядкуk величини Х визначають відповідно за такими формулами:

Якщо існує початковий абсолютний момент порядку k, то існують усі моменти нижчих порядків.

Медіаною випадкової величини є Х будь-який корінь рівняння

Мода дискретної величини — це таке її значення, імовірність якого найбільша.

Модою неперервного розподілу є значення випадкової величини, за якого щільність розподілу має максимум.

Асиметрія випадкової величини визначається за формулою:

Ексцес випадкової величини обчислюють за формулою:

15.Сукупність випадкових величин які розглядаються спільно, називається системою випадкових величин. У загальному випадку систему випадкових величин можна інтерпретувати як випадкову точку або випадковий вектор у просторі вимірів.

Розглядають системи дискретних випадкових величин, неперервних випадкових величин, а також системи, до яких входять як дискретні, так і неперервні випадкові величини. Закони розподілу систем випадкових величин задаються різними способами. Так, закон розподілу системи двох дискретних випадкових величин можна задати таблицею:

...

...

...

...

...

...

...

...

...

У цій таблиці

Функція розподілу системи двох випадкових величин визначає ймовірність спільного настання двох подій:

16.Сукупність випадкових величин які розглядаються спільно, називається системою випадкових величин. Якщо тобто розглядається система двох випадкових величин , то геометрично її можна тлумачити як випадкову точку з координатами на площині або як випадковий вектор, складові якого — випадкові величини Початковим моментом порядку системи називається величина . Якщо , маємо при дістаємо

Центральним моментом порядку називається величина . При значеннях Якщо навпаки, , то нарешті, при — кореляційний момент (коваріація) випадкових величин Його можна обчислити також за формулою: Для незалежних випадкових величин кореляційний момент дорівнює нулю.

Кореляційний момент характеризує тісноту лінійної залежності між величинами. З цією самою метою застосовують коефіцієнт кореляціїr1, або -1rxy1.Отже якщо випадкові величини Х таУ є незалежними , то Кху =0 і rxy=0. Якщо кореляційний момент (коефіцієнт кореляції) дорівнює нулю, то величини називаються некорельованими.

17. Функція розподілу системи двох випадкових величин визначає ймовірність спільного настання двох подій: Геометрично функцію розподілу можна інтерпретувати як імовірність потрапляння випадкової точки в нескінченний прямокутник із вершиною обмежений згори і праворуч

Функція розподілу має такі властивості:

— неспадна функція х і y;

Функції визначають закони розподілу для випадкових величин які входять до системи.

За допомогою функції розподілу можна подати ймовірність потрапляння випадкової точки у прямокутник, сторони якого паралельні осям координат:

Якщо розглядається система неперервних випадкових вели-чин, то для неї визначається щільність розподілу При цьому має такі властивості:

Імовірність потрапляння випадкової точки у довільну область D подається формулою:

Функція розподілу системи двох випадкових величин виражається через щільність розподілу:

Скориставшись властивостями функції розподілу системи неперервних величин, можна знайти щільності розподілу величин, які входять до цієї системи:

19.Сукупність випадкових величин які розглядаються спільно, називається системою випадкових величин.Для системи випадкових величин числові характеристики задаються вектором математичних сподівань і кореляційною матрицею:

Якщо елементи цієї матриці поділимо на добуток , дістанемо матрицю, складену з коефіцієнтів кореляції:

20.Нехай закон дискретной випадкової величини Х задано таблицею:

Х=хі

х1

х2

х3

...

хк

Р(Х=хі)=рі

р1

р2

р3

..

рк

Тоді закон розподілу випадкової величини У=(х) матиме такий вигляд:

У=(хі)

(х1)

(х2)

(х3)

...................

(хк)

Р(У=(хі)=рі

р1

р2

р3

....................

рк

Loading...

 
 

Цікаве