WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Шпаргалка - Реферат

Шпаргалка - Реферат

22. Сущность и определение моды.

Модой в стат-ке наз.вариант, имеющий наиб.частоту. Исп-ся этот пок-ль для определ-я более распростр.размера обуви, одежды и т.д.

В дискретн. вариац.ряду расчет моды сложн-ти не вызывает.

Тарифн.разряд

Число рабочих

1

3

2

9

3

16

4

13

5

10

ИТОГО:

58

Мо = 3 разряд

Расчет моды для интерв.вариац.ряда с равн. интервалами:

Мо=Хо+h(fMo- fMo-1)/(fMo- fMo-1)+(fMo- fMo+1)

где Хо – нижн.граница модальн.интервала, h-ширина интервала

fMo-1,fMo ,fMo+1 – соотв-но частоты предмод-го, мод-го, послемод-ого инт-лов

Модальн.интервал – инт-ал с наиб. част-й

23. Сущность и опред-ние медианы (М).

М.- наз-ся вариант, распол.в середине ранжиров.ряда и делящий сумму частот пополам. М. делит ряд на 2 равн.части таким образом, что по обе стор.от неё нах-ся одинак.кол-во ед-ц совок-ти, при этом у 1 половины зн-е признака меньше медианы, а у др.больше.

Расчет М. для дискретн. вариац. ряда:

- опред-ся накопленные(нарастающие) частоты; как только накопл.частота окаж-ся больше или равной полусумме частот, соотв.вариант будет явл-ся медианой.

Расчет М. для интерв.вариац.ряда с равн.интервалами:

- опр-ем интервал, в к-ом нах-ся медиана – медианный интервал, к-ый хар-ся тем, что его накопл.частота впервыеравна или больше полусуммы частот:

Ме=Хо+h(∑f/2 -SMe-1)/fMе, где

Хо – нижн.граница медианного интервала

h – ширина интервала; ∑f/2 –полусумма частот;

29. Общ. понятие об индексах и индексный анализ. Виды индексов. Индексированые величины.

Индекс – это относит. пок-ль, хар-щий соотн-е уровней явления во времени, но по сравнению с планом и в пространстве.

В соотв-ии с этим определением к индексам относ. след. относ. величины: ОВД, ОВПЗ, ОВВП, ОВСр. В узком смысле слова под индексом понимают все вышеперечисл. отн. вел-ны, но построенные особым образом – в увязке с одним или неск. др. пок-лями.

Виды индексов по охвату эл-тов совокупности: индивид (i) и сводные (I).

Индивид. индекс хар-ет соотн-е ур-ней только 1 эл-та совок-ти. Сводный индекс хар-ет соотношение уровней сложн. явления вцелом, т.е. соотн-е неск. эл-тов совок-ти.

Показатель, соотн-е к-го хар-ет индекс наз-ся индексируемым. Индексируемые пок-ли м.б. объемными (кол-венными) и качественными (интенсивными). Объемн. пок-ль хар-ет общ. объем (размер) признака (выпуск продукции, затраты времени, ст-ть фондов предпр.). Кач-венные пок-ли хар-ют объем признаков в расчете на ед-цу совок-ти (себест-ть ед-цы пр-ции, выраб-ка на 1 рабочего).

24. Сущн-ть вариации и ее показатели.

Вариация – это изменение признака у единиц совокупности. Для колич-ной оценки вариации или колеблемости признака используются след. пок-ли:

1.размах вариации хар-ет амплитуду колебаний R=Xmax – Xmin, где

Xmax, Xmin – соответственно max и min значения признака. Преимущество показателя – легкость в применении, недостаток – его аеличина зависит только от крайних точек.

2. среднее линейное отклонение (Л) показ. средн. отклонение отдельн. вариантов от их средней величины и рассчит-ся как средн. арифметич. Для несгруппиров. данных исп-ют ср. арифм. простую форму, для сгруппиров. – взвешенную.

Простая форма:

Л=Σ│х - х− │/ n , где х – отдельное значение признака, х− - среднее значение признака, n – число единиц совок-ти.

Взвешенная форма:

Л=Σ(х - х− )f/ Σf , где х – отдельное значение признака, х− - среднее значение признака, f – частоты (веса).

3.дисперсия показ. средние квадратич. отклонения отдельных вариантов от их средн. величины. Это теоретич. вел-на, не имеет единиц измерения, используется для расчета средн. квадратич. отклонения. Дисперсия имеет 2 формы: простую (для несгруппир. данных). δ = √Σ(х - х− )2 / n, где х – отдельное значение признака, х− - среднее значение признака, n – число единиц совок-ти.

- и взвешенную (для сгруппир. данных):

δ = √ Σ(х - х− )2 f / Σf ,где х – отдельное значение признака, х− - среднее значение признака, f – частоты (веса).

5.коэффициент вариации – это проц-ное отн-ение средн. лин-ого или ср. квадратич. откло-ния к средн. величине признака.

Vл = Л / х− * 100 (линейн.)

Vδ = δ / х− * 100 (квадратич.)

25.Понят. и виды рядов динамики, их сост. элем-ты и правила построения.

Ряд динамики – это ряд чисел, распол. в хронол. послед-ти, к-ые хар-зуют измен-е явления во времени. Ряд динамики всегда сост. из 2х элементов: 1.мом-тов времени (калоендарн. дат) или интервалов времени (год, квартал, месяц);

2.уровней ряда динамики. Виды рядов динамики зависят от: 1.хар-ра пок-ля, являющегося уровнем ряда : *ряд динамики абсол. вел-н; *ряд дин-ки ср. вел-н; *ряд дин-ки относ. вел-н;

2. времени, к к-му относ. стат. данные: *интервальные; *моментные.

Пок-ли интерв. рядов дин-ки хар-ют итоги к-л. процесса за определ. Период времени (год, квартал, месяц и т.д.). Например, товарооборот магазина за квартал. Уровни интерв. ряда дин-ки можно суммировать (ВВП 2001 + ВВП2002 = ВВП за 2 года)

В моментном ряду динамики пок-ли его характеризуют наличие ч-л. на определ. момент времени (число родившихся на начало года). Суммировать пок-ли в моментном ряду дин-ки экон. смысла не имеет. Осн. принцип построения рядов дин-ки заключ. в том, что уровни ряда дин-ки должны быть между собой сопоставимы (по ед-цам измер-я, по времени, по тер-рии, по кругу охватыв-ых объектов).

28. Ср-ние пок-ли анал-а дин-ых рядов.

Средн. абсол. темп роста показ-ет на ск-ко единиц увеличивался или уменьшался уровень по сравнению с базисным в среднем за единицу времени:

Δˉ = (Уi – Уi-t) / t = ∆б / t = Σ∆ц / t ,

Средний темп роста показывает (если выражен в форме коэф-та) во ск-ко раз увелич-ся уровень по сравнению с базисн. в средн. за единицу времени.

Тр‾ =t √Уi / Уi-t = t √ Трбаз =

= t √ Тр 1 * Тр 1 *...* Тр t

(средняя геометрическая)

Темп прироста средний показывает (если выражен в %) на ск-ко % увелич-ся или уменьш-ся ур-нь в отч. по сравнению с базисн. в среднем за единицу времени.

Тпр‾ (%)=Тр‾ (%) – 100

26.Базисные и цепные пок-ли анализа рядов дин-ки и их взаимосвязь.

Пок-ли дин-ки рассчит-ся на цепной и базисной основе. В цепных пок-лях дин-ки кажд. последующий уровень сравнивается с предыдущим, а в базисных – кажд. ур-нь сравнив-ся с одним, принятым за базу сравнения.

Абсолютный прирост хар-ет абсол. скорость роста и показ-ет на ск-ко ед-ц увел-ся или уменьшается уровень за период: Δбаз. = Уi – Уi-t

Δцепн. = Уi – Уi-1, где Уi-1 – предыдущий ур-нь, Уi – сравниваемый уровень, Уi-t – базисный ур-нь, t – длина периода. Взаимосвязь между баз. и цепн. абсол. приростами: сумма последоват. цепных приростов дает прирост за весь период.

Темп роста (Тр) показывает во ск-ко раз увел-ся уровень в отч. периоде по сравнению с базисным (предыдущим) или какую часть базисного (предыдущего) составляет. Тр баз. = Уi / Уi-t

Тр цепн. = Уi / Уi-1

Взаимосвязь между цепн. и базисн. темпами роста: произвед-е последовательн. темпов роста зает темп роста за весь период, т.е. соответствующий базисный темп роста.

Темп прироста хар-ет относ. вел-ну прироста и выраж. в %, показ-ет на ск-ко % увел-ся или уменьш-ся уровень по сравнению с базисным или предыдущим.

Тпр(%) = Тр(%) – 100 – ф-ла соотв-ет и цепным и базисным темпам прироста.

Абсол. содерж-е 1 % прироста показ-ет ск-ко абсол. единиц соответствует кажд. % прироста. А = Уi-t / 100.

27. Ср-ие уровни рядов дин-ки, их расчет в интерв. и мом-ных рядах дин-ки.

Ср. ур-нь интерв. ряда дин-ки (за период) вычисляется по формуле средней арифметической простой:

У‾ = ΣУ/t , гдеΣУ – сумма уровней за весь период, t – длина периода.

Ср. уровень моментного ряда динамики зависит от характера исходной инф-ции: 1.имеется полная исчерпывающая информ-я обо всех измен-ях уровня ряда. Примен-ся ф-ла средн. арифм. взвеш.: У‾ = ΣУ/Σt, У – уровни, остающиеся без изменения на протяж. времени t.

Loading...

 
 

Цікаве