WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Ряди динаміки. аналіз інтенсивності та тенденцій розвитку - Реферат

Ряди динаміки. аналіз інтенсивності та тенденцій розвитку - Реферат

Порядок згладжування методом ковзної середньої розглянемо на прикладі динамічного ряду врожайності зернових у регіоні (табл. 8.3). Ширина інтервалу згладжування m = 3. Первинний ряд складається із семи рівнів, ряд ковзних середніх — з п'яти, тобто на два рівні коротший (7 – 3 + 1).

Таблиця 8.3

РОЗРАХУНОК КОВЗНИХ СЕРЕДНІХ УРОЖАЙНОСТІ ЗЕРНОВИХ

Порядковийномер року

, ц/га

Ковзна середня

Розрахунок

1

23,8

2

19,1

21,6

(23,8 + 19,1 + 21,9) : 3 = 21,6

3

21,9

22,2

21,6 + (25,6 – 23,8) : 3 = 22,2

4

25,6

24,0

22,2 + (24,5 – 19,1) : 3 = 24,0

5

24,5

26,2

24,0 + (28,5 – 21,9) : 3 = 26,2

6

28,5

26,9

26,2 + (27,7 – 25,6) : 3 = 26,9

7

27,7

Перше значення ковзної середньої обчислюється як арифметична проста, кожне наступне можна визначити на основі попередньої середньої та коригуючого доданка. Наприклад:

(ц/га);

(ц/га);

(ц/га) і т. д.

У згладженому ряді трирічних ковзних середніх усунено первинні коливання врожайності й чітко виявляється систематичне підвищення її рівня.

Метод ковзних середніх застосовують також для попередньої обробки дуже коливних динамічних рядів; можливе подвійне згладжування.

При аналітичному вирівнюванні динамічного ряду фактичні значення yt замінюються обчисленими на основі певної функції Y = f (t), яку називають трендовим рівнянням (t — змінна часу, Y — теоретичний рівень ряду).

Вибір типу функції ґрунтується на теоретичному аналізі суті явища, яке вивчається, і характері його динаміки. Зазвичай перевага надається функціям, параметри яких мають чіткий економічний зміст і вимірюють абсолютну чи відносну швидкість розвитку. Суттєвою підмогою при виборі функцій є аналіз ланцюгових характеристик інтенсивності динаміки. Якщо ланцюгові абсолютні прирости відносно стабільні, не мають чіткої тенденції до зростання чи зменшення, вирівнювання ряду виконується на основі лінійної функції: . Якщо ж відносно стабільними є ланцюгові темпи приросту, то найбільш адекватною такому характеру динаміки є експонента . У зазначених функціях t — порядковий номер періоду (дати), а — рівень ряду при t = 0. Параметр b характеризує швидкість динаміки: середню абсолютну в лінійній функції і середню відносну — в експоненті. Коли характеристики швидкості розвитку зростають (чи зменшуються), використовуються інші функції (парабола 2-го степеня, модифікована експонента тощо).

Параметри трендових рівнянь визначають методом найменших квадратів. Згідно з умовою мінімізації суми квадратів відхилень фактичних рівнів ряду від теоретичних параметри визначаються розв'язуванням системи нормальних рівнянь. Для лінійної функції вона записується так:

,

.

Система рівнянь спрощується, якщо початок відліку часу (t = 0) перенести в середину динамічного ряду. Тоді значення t, розміщені вище середини, будуть від'ємними, а нижче — додатними. При непарнoму числі членів ряду (наприклад, n = 5) змінній t надаються значення з інтервалом одиниця: –2, –1, 0, 1, 2; при парному: –2,5, –1,5, –0,5, 0,5, 1,5, 2,5. В обох випадках , а система рівнянь набирає вигляду

,

.

Отже, . Значення можна визначити за формулами:

для непарного числа членів ряду

;

для парного числа членів ряду

.

Порядок обчислення параметрів лінійної функції розгляне-мо на прикладі динамічного ряду видобутку нафти в регіоні (табл. 8.4).

Таблиця 8.4

ДИНАМІКА ВИДОБУТКУ НАФТИ

Рік

, млн т

Δt

Змінна часу t

yt t

= 74,5 + 3,8t

1993

63,5

–3

–190,5

63,1

1994

66,8

3,3

–2

–133,6

66,9

1995

71,0

4,2

–1

–71,0

70,7

1996

74,3

3,3

0

0

74,5

1997

76,9

2,6

1

76,9

78,3

1998

82,2

5,3

2

164,4

82,1

1999

86,8

4,6

3

260,4

85,9

Разом

521,5

0

106,6

521,5

Ланцюгові абсолютні прирости динамічного ряду практично стабільні, тому тенденцію можна описати лінійною функцією. Оскільки довжина ряду n = 7, то Σ t = 7 (7 – 1) : 12 = 28. Параметри трендового рівняння становлять:

a = Σyt: n = 521,5 : 7 =74,5;

b = Σyt t : Σ t = 106,6 : 28 = 3,8.

Лінійний тренд має вигляд = 74,5 + 3,8t, тобто середній рівень видобутку нафти становить 74,5 млн т, середньорічний приріст видобутку — 3,8 млн т.

В останній графі таблиці для кожного року наведено теоретичні рівні , тобто очікувані рівні видобутку нафти в t-му році, зумовлені дією основних чинників розвитку галузі: для 1993 р. = 74,5 + 3,8 (–3) = 63,1 млн т, для 1994 р. = 74,5 + 3,8 (–2) = 66,9 млн т і т. д.

Суми фактичних рівнів і розрахованих за лінійним трендом теоретичних рівнів однакові: = = 521,5 млн т.

Продовження виявленої тенденції за межі ряду динаміки називають екстраполяцією тренду. Це один із методів статистичного прогнозування, передумовою використання якого є незмінність причинного комплексу, що формує тенденцію. Прогнозний, очікуваний рівень залежить від бази прогнозування та періоду упередження v. Так, припускаючи, що умови, в яких формувалась тенденція видобутку нафти, найближчим часом не зміняться, визначимо прогноз на 2001 рік. Базою прогнозування є теоретичний рівень 1999 р., період упередження v = 2. Очікуваний в 2001 р. видобуток нафти досягне 93,5 млн т:

= 85,9 + 3,8 2 = 93,5.

Метод екстраполяції дає точковий прогноз. На практиці, як правило, визначають довірчі межі прогнозного рівня , де — стандартна похибка прогнозу, t-квантиль розподілу Стьюдента (див. підрозд. 6.2).

Оцінка коливань та сталості динаміки

Фактичні рівні динамічних рядів під впливом різного роду чинників варіюють, відхиляючись від основної тенденції розвитку. В одних рядах коливання мають систематичний, закономірний характер, повторюються через певні інтервали часу, в інших — не мають такого характеру і тому називаються випадковими. У конкретному ряду можуть поєднуватися систематичні та випадкові коливання.

Найпростішою оцінкою систематичних коливань є коефіцієнтинерівномірності, які обчислюються відношенням максимального і мінімального рівнів динамічного ряду до середнього. Чим більша нерівномірність процесу, тим більша різниця між цими двома коефіцієнтами.

Наприклад, споживання питної води за добу становить 7200 м3, у середньому за годину 7200 : 24 = 300 м3. Найбільший рівень споживання води в період від 20 до 21 години — 381 м3, найменший — у період від 2 до 3 год — 165 м3.

Коефіцієнти нерівномірності такі:

Kmax = 381 : 300 = 1,27;

Kmin = 165 : 300 = 0,55.

Амплітуда коливань у розмірі 72 пункти [100 (1,27 – 0,55)] свідчить про істотну нерівномірність споживання води протягом доби.

Окремим соціально-економічним процесам притаманні внутрішньорічні, сезонні піднесення і спади. Наприклад, виробництво й переробка сільськогосподарської продукції, нерівномірне завантаження транспорту, коливання попиту на товари тощо. Сезонні коливання виявляються і аналізуються на основі рядів щомісячних або щоквартальних даних.

Loading...

 
 

Цікаве