WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Методи аналізу взаємозв’язків - Реферат

Методи аналізу взаємозв’язків - Реферат

або .

Критичні значення характеристик щільності зв'язку для рівня істотності  = 0,05 і відповідного числа ступенів свободи для факторної дисперсії k1 і залишкової k2 наведено в табл. 7.6. Ступені свободи залежать від обсягу сукупності n та числа груп або параметрів функції m, тобто k1 = m – 1, k2 = nm.

Таблиця 7.6

КРИТИЧНІ ЗНАЧЕННЯ КОЕФІЦІЄНТА ДЕТЕРМІНАЦІЇ R2І КОРЕЛЯЦІЙНОГО ВІДНОШЕННЯ 2

ДЛЯ РІВНЯ ІСТОТНОСТІ  = 0,05

1

2

3

4

5

5

0,569

699

764

806

835

6

500

632

704

751

785

7

444

575

651

702

739

8

399

527

604

657

697

9

362

488

563

618

659

10

332

451

527

582

624

12

283

394

466

521

564

14

247

348

417

471

514

16

219

312

378

429

477

18

197

283

345

394

435

20

179

259

318

364

404

24

151

221

273

316

353

28

130

193

240

279

314

32

115

171

214

250

282

36

102

153

192

226

256

40

093

139

176

207

234

50

075

113

143

170

194

60

063

095

121

144

165

80

047

072

093

110

127

100

038

058

075

090

103

120

032

049

063

075

087

200

019

030

038

046

053

Так, критичне значення коефіцієнта детермінації для k1 = 2 – 1 = 1 і k2 = 8 – 2 = 6 становить . Обчислений за даними табл. 7.3 коефіцієнт детермінації R2 = 0,81 перевищує критичне значення, що з імовірністю 0,95 підтверджує істотність зв'язку між кількістю внесених добрив і врожайністю зернових.

Аналогічно визначимо критичне значення кореляційного відношення для k1 = 4 – 1 = 3 та k2 = 100 – 4 = 96. Оскільки значення k2 = 96 у табл. 7.6 відсутнє, можна використати найближче до нього число k2 = 100. Критичне значення .

Розраховане за даними табл. 7.2 кореляційне відношення 2 = 0,745 значно перевищує критичне, а отже, гіпотеза про випадковий характер відхилень групових середніх відхиляється. Зв'язок між глибиною розробки вугільних пластів і фондомісткістю видобутку вугілля з імовірністю 0,95 визнається істотним.

Розглянута процедура перевірки істотності зв'язку є складовою дисперсійного аналізу, розробленого Р. Фішером. Характеристика критерію Фішера — дисперсійне відношення F — функціонально пов'язана з кореляційним відношенням , а тому результати перевірки будуть ідентичні.

Рангова кореляція

Взаємозв'язок між ознаками, які можна зранжувати, передусім на основі бальних оцінок, вимірюється методами рангової кореляції. Рангами називають числа натурального ряду, які згідно зі значеннями ознаки надаються елементам сукупності і певним чином упорядковують її. Ранжування проводиться за кожною ознакою окремо: перший ранг надається найменшому значенню ознаки, останній — найбільшому або навпаки. Кількість рангів дорівнює обсягу сукупності. Очевидно, зі збільшенням обсягу сукупності ступінь "розпізнаваності" елементів зменшується. З огляду на те, що рангова кореляція не потребує додержання будь-яких математичних передумов щодо розподілу ознак, зокрема вимоги нормальності розподілу, рангові оцінки щільності зв'язку доцільно використовувати для сукупностей невеликого обсягу.

Ранги, надані елементам сукупності за ознаками х і у, позначають відповідно Rxj та Ryj. Залежно від ступеня зв'язку між ознаками певним чином співвідносяться й ранги. При прямому функціональному зв'язку Rxj = Ryj, тобто відхилення між рангами dj = RxjRyj = 0, отже, і сума квадратів відхилень . При зворотному функціональному зв'язку де n — число рангів. Якщо зв'язок між ознаками відсутній, являє собою середню арифметичну цих крайніх значень:

,

а отже,

.

Спираючись на зазначену математичну тотожність, К. Спірмен запропонував формулу для коефіцієнта рангової кореляції:

.

Цей коефіцієнт має такі самі властивості, як і лінійний коефіцієнт кореляції: змінюється в межах від – 1 до + 1, водночас оцінює щільність зв'язку та вказує на його напрям.

Визначимо коефіцієнт рангової кореляції за даними експертних оцінок ефективності економіки та ступеня політичного ризику для семи країн з перехідною економікою (табл. 7.7). Оскільки експертні оцінки представлені балами, необхідно провести ранжування країн. За оцінками ефективності економіки країні з найбільшим балом надається ранг 1, з найменшим — ранг n = 7. За оцінками ступеня політичного ризику, навпаки, ранг 1 надається країні з найменшим ризиком, а ранг 7 — країні з найбільшим ризиком.

Таблиця 7.7

ДО РОЗРАХУНКУ КОЕФІЦІЄНТА РАНГОВОЇ КОРЕЛЯЦІЇ

№з/п

Експертні оцінки, балів

Ранги

dj = Rxj – Ryj

Ефективність економіки (mах= 10)

Ступінь політичного ризику (mах = 100)

Rxj

Ryj

1

6,6

64,5

1

7

–6

36

2

5,8

57,8

2

6

–4

16

3

2,9

23,6

6

1

5

25

4

3,4

36,2

5

4

1

1

5

4,5

45,3

3

5

–2

4

6

2,7

28,4

7

2

5

25

7

4,2

32,7

4

3

1

1

Разом

108

Loading...

 
 

Цікаве