WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Методи аналізу взаємозв’язків - Реферат

Методи аналізу взаємозв’язків - Реферат

.

Він показує, на скільки процентів у середньому змінюється результат у зі зміною фактора х на 1%. У нашому прикладі тобто збільшення кількості внесених добрив на 1% спричинює приріст урожайності зернових у середньому на 0,8%.

Оцінити відносний ефект впливу фактора х на результат у можна безпосередньо на основі степеневої функції Y = axb, параметр b якої є коефіцієнтом еластичності. Степенева функція зводиться до лінійного виду логарифмуванням lg Y = lg a + blg x. До класу степеневих належать функції споживання, виробничі функції тощо.

Оцінка щільності та перевірка істотності кореляційного зв'язку

Поряд із визначенням характеру зв'язку та ефектів впливу факторів х на результат у важливе значення має оцінка щільності зв'язку, тобто оцінка узгодженості варіації взаємозв'язаних ознак. Якщо вплив факторної ознаки х на результативну у значний, це виявиться в закономірній зміні значень у зі зміною значень х, тобто фактор х своїм впливом формує варіацію у . За відсутності зв'язку варіація у не залежить від варіації х.

Для оцінювання щільності зв'язку статистика використовує низку коефіцієнтів з такими спільними властивостями:

  • за відсутності будь-якого зв'язку значення коефіцієнта наближається до нуля; при функціональному зв'язку — до одиниці;

  • за наявності кореляційного зв'язку коефіцієнт виражається дробом, який за абсолютною величиною тим більший, чим щільніший зв'язок.

Серед мір щільності зв'язку найпоширенішим є коефіцієнт кореляції Пірсона. Позначається цей коефіцієнт символом r. Оскільки сфера його використання обмежується лінійною залежністю, то і в назві фігурує слово "лінійний". Обчислення лінійного коефіцієнта кореляції r ґрунтується на відхиленнях значень взаємозв'язаних ознак x і у від середніх.

За наявності прямого кореляційного зв'язку будь-якому значенню хі > відповідає значення , а відповідає . Узгодженість варіації х і у схематично показано на рис. 7.2 у вигляді кореляційного поля зі зміщеною системою координат.

Рис. 7.2. Узгодженість варіації взаємозв'язаних ознак

Точка, координатами якої є середні і , поділяє кореляційне поле на чотири квадранти, в яких по-різному поєднуються знаки відхилень від середніх:

Квадрант

(х – )

(у – )

I

+

+

II

+

III

IV

+

Для точок, розміщених у І та ІІІ квадрантах, добуток додатний, а для точок з квадрантів ІІ і ІV — від'ємний. Чим щільніший зв'язок між ознаками х і у, тим більша алгебраїчна сума добутків відхилень . Гранична сума цих добутків дорівнює .

Коефіцієнт кореляції визначається відношенням зазначених сум:

.

Очевидно, що в разі функціонального зв'язку фактична сума відхилень дорівнює граничній, а коефіцієнт кореляції r = 1; при кореляційному зв'язку абсолютне його значення буде тим більшим, чим щільніший зв'язок.

На практиці застосовують різні модифікації наведеної формули коефіцієнта кореляції. Для оцінювання щільності зв'язку між кількістю внесених добрив та врожайністю зернових скористаємося однією з модифікацій зазначеної формули:

.

За даними табл. 7.3

Згідно з цими значеннями коефіцієнт кореляції становить 0,900, що свідчить про вагомий вплив кількості внесених добрив на врожайність зернових:

.

Коефіцієнт кореляції, оцінюючи щільність зв'язку, указує також на його напрям: коли зв'язок прямий, r — величина додатна, а коли він зворотний — від'ємна. Знаки коефіцієнтів кореляції і регресії однакові, величини їх взаємозв'язані функціонально:

; .

Завдяки цьому один коефіцієнт можна обчислити, знаючи інший. Наприклад:

.

Вимірювання щільності нелінійного зв'язку ґрунтується на співвідношенніваріацій теоретичних та емпіричних (фактичних) значень результативної ознаки у. Як зазначалося в підрозд. 5.6, відхилення індивідуального значення ознаки у від середньої можна розкласти на дві складові. У регресійному аналізі це відхилення від лінії регресії (у – Y) та відхилення лінії регресії від середньої .

Відхилення є наслідком дії фактора х, відхилення — наслідком дії інших факторів. Взаємозв'язок факторної та залишкової варіацій описується правилом декомпозиції варіації:

,

де — загальна дисперсія ознаки y; — факторна дисперсія; — залишкова дисперсія.

Очевидно, значення факторної дисперсії буде тим більшим, чим сильніший вплив фактора х на y. Відношення факторної дисперсії до загальної розглядається як міра щільності кореляційного зв'язку і називається коефіцієнтом детермінації:

.

Якщо за даними табл. 7.3 , , то .

Аналогічний результат дають такі обчислення:

.

Коефіцієнт детермінації становить ,

тобто 81% варіації врожайності зернових залежить від варіації кількості внесених добрив, а 19% припадає на інші фактори.

Корінь квадратний з коефіцієнта детермінації називають індексом кореляціїR. Коли зв'язок лінійний, , що підтверджують обчислення: Тому за відомим лінійним коефіцієнтом кореляції r можна визначати внесок ознаки x у варіацію ознаки y. Так, при r = 0,6 можна сказати, що 36% варіації y залежить від варіації x.

На таких самих засадах ґрунтується оцінювання щільності зв'язку за даними аналітичного групування. Мірою щільності зв'язку є кореляційне відношення

,

де 2 — міжгрупова дисперсія, яка вимірює варіацію ознаки у під впливом фактора х, а 2 — загальна дисперсія.

Застосуємо кореляційне відношення для оцінювання щільності зв'язку між глибиною розробки вугільних пластів і фондомісткістю видобутку вугілля (див. табл. 7.2). Розрахунки загальної та факторної дисперсій подано в табл. 7.4 та 7.5. Згідно з розрахунками загальна дисперсія становить 5,19, факторна — 3,86:

;

.

Кореляційне відношення

,

тобто 74,5% варіації фондомісткості вугілля на шахтах регіону пояснюється варіацією глибини розробки пластів.

Таблиця 7.4

ДО РОЗРАХУНКУ ЗАГАЛЬНОЇ ДИСПЕРСІЇ ФОНДОМІСТКОСТІ ВУГІЛЛЯ ()

Фондомісткість, грн. / т

18—20

0—22

22—24

24—26

26—28

Разом

Кількість шахт

9

15

34

28

14

100

19

21

23

25

27

– 4,5

–2,5

–0,5

1,5

3,5

182,25

93,75

8,5

63,0

171,5

519

Таблиця 7.5

ДО РОЗРАХУНКУ ФАКТОРНОЇ ДИСПЕРСІЇФОНДОМІСТКОСТІ ВУГІЛЛЯ ()

Глибина розробки пластів, м

До 300

17

20,0

–3,5

208,25

300 — 500

40

22,9

–0,6

14,40

500 — 700

25

24,8

1,3

42,25

700 і більше

18

26,1

2,6

121,68

У цілому

100

23,5

386,58

Обчислення та інтерпретація коефіцієнта детермінації R2 і кореляційного відношення 2 показують: ці характеристики щільності зв'язку за змістом ідентичні, вони характеризують внесок фактора x у загальну варіацію результату y.

Перевірка істотності кореляційного зв'язку ґрунтується на порівнянні фактичних значень R2 і 2 з критичними, які могли б виникнути за відсутності зв'язку. Якщо фактичне значення чи 2 перевищує критичне, то зв'язок між ознаками не випадковий. Гіпотеза, що перевіряється, формулюється як нульова:

Loading...

 
 

Цікаве