WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Ряди розподілу. аналіз варіацій та форми розподілу - Реферат

Ряди розподілу. аналіз варіацій та форми розподілу - Реферат

.

Отже, загальна дисперсія складається з двох частин. Перша характеризує внутрішньогрупову, друга — міжгрупову варіацію.

Взаємозв'язок дисперсій називається правилом розкладання (декомпозиції) варіації:

.

Розглянемо розрахунок зазначених дисперсій на прикладі варіації якості твердого сиру у залежно від терміну його зберігання х. Результати вибіркового обстеження якості 20 партій сиру, розподіл їх за терміном зберігання (1, 2, 3 місяці), розрахунки середніх та дисперсій наведено в табл. 5.13. Згідно з даними таблиці маємо:

1) середній бал якості сиру (за 10-бальною шкалою)

;

2) загальна дисперсія балів якості

;

3) групові середні бали якості та групові дисперсії:

;

;

;

;

;

.

Таблиця 5.13

РОЗРАХУНОК ЗАГАЛЬНОЇ ТА ГРУПОВИХ ДИСПЕРСІЙ ЯКОСТІ СИРУ

№з/п

Термін зберігання х, міс.

Бал якості, y

Розрахунок дисперсій якості

загальної

групових

1-ша група

2-га група

3-тя група

у

у

у

1

2

7,3

0,01

7,3

0,01

2

1

8,8

1,96

8,8

0,01

3

1

8,4

1,00

8,4

0,09

4

3

6,5

0,81

6,5

0,36

5

2

7,5

0,01

7,5

0,09

6

3

6,4

1,00

6,4

0,25

7

1

9,1

2,89

9,1

0,16

8

1

8,6

1,44

8,6

0,01

9

3

5,7

2,89

5,7

0,04

10

2

6,8

0,36

6,8

0,16

11

2

7,7

0,09

7,7

0,25

12

3

5,6

3,24

5,6

0,09

13

1

8,9

2,25

8,9

0,04

14

2

7,8

0,16

7,8

0,36

15

3

5,3

4,41

5,3

0,36

16

1

8,5

1,21

8,5

0,04

17

2

6,8

0,36

6,8

0,16

18

2

7,1

0,09

7,1

0,01

19

1

8,6

1,44

8,6

0,01

20

2

6,6

0,64

6,6

0,36

Разом

148,0

26,26

60,9

0,36

57,6

1,4

29,5

1,1

Середня

7,4

8,7

7,2

5,9

Дисперсія

1,313

0,051

0,175

0,220

Значення групових середніх підтверджують залежність якості сиру від терміну його зберігання. У 1-й групі середній бал якості становить 8,7, у 2-й групі якість сиру знижується на 1,5 бала, а в 3-й зниження якості порівняно з першою групою становить 2,8 бала. Водночас зростає варіація балів у групах, що відбиває посилення впливу інших чинників на якість сиру.

Необхідні величини для розрахунку середньої з групових і міжгрупової дисперсій наведено в табл. 5.14.

Таблиця 5.14

ДО РОЗРАХУНКУ МІЖГРУПОВОЇ ТА СЕРЕДНЬОЇ З ГРУПОВИХ ДИСПЕРСІЙ

Групи за терміном зберігання, міс.

Число партій

Середній балякості

Групова дисперсія

Розрахунок дисперсій

середньої з групових

міжгрупової

1

7

8,7

0,051

0,36

1,3

11,83

2

8

7,2

0,175

1,40

– 0,2

0,32

3

5

5,9

0,220

1,10

– 1,5

11,25

Разом

20

7,4

2,86

23,4

За даними таблиці міжгрупова дисперсія становить

середня з групових дисперсій

.

Сума їх дорівнює загальній дисперсії: 0,143 + 1,170 = 1,313.

Міжгрупова варіація — це результат впливу фактора, який покладено в основу групування, внутрішньогрупова — інших факторів, окрім групувального. Відношення міжгрупової дисперсії до загальної характеризує частку варіації результативної ознаки у, яка пов'язана з варіацією групувальної ознаки. Це відношення називають кореляційним і позначають символом :

.

У розглянутому прикладі кореляційне відношення становить , тобто 84,2% варіації якості сиру пов'язані з терміном зберігання. На інші фактори припадає 100 – 84,2 == 15,8% варіації.

Правило декомпозиції варіації є основою вимірювання щільності зв'язку.

Loading...

 
 

Цікаве