WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Ряди розподілу. аналіз варіацій та форми розподілу - Реферат

Ряди розподілу. аналіз варіацій та форми розподілу - Реферат

Якщо розподіл значень ознаки в сукупності рівномірний, то частки однакові — , відхилення часток свідчать про певну концентрацію. Верхня межа суми відхилень , а тому коефіцієнт концентрації обчислюється як півсума модулів відхилень:

.

Значення коефіцієнта коливаються в межах від нуля (рівномірний розподіл) до одиниці (повна концентрація). Чим більший ступінь концентрації, тим більше значення коефіцієнта K. У нашому прикладі K = 1,28 : 2 = 0,64, що свідчить про високий ступінь концентрації споживання електроенергії у промисловості регіону.

Коефіцієнти концентрації широко використовуються в регіональному аналізі для оцінювання рівномірності територіального розподілу виробничих потужностей, фінансових ресурсів тощо. За кожним регіоном визначається також коефіцієнт локалізації

,

який характеризує співвідношення часток.

За даними табл. 5.9 коефіцієнти локалізації свідчать про нерівномірність купівлі (продажу) на душу населення і певною мірою про варіацію життєвого рівня населення різних регіонів.

Таблиця 5.9

КОЕФІЦІЄНТИ ТЕРИТОРІАЛЬНОЇ ЛОКАЛІЗАЦІЇ

Регіон

У % до підсумку

Коефіцієнти локалізації Lj, %

Чисельність населення dj

Обсяг товарообороту Dj

А

30

34

113

В

50

42

84

С

20

24

120

Разом

100

100

*

Порівняння структур на основі відхилень часток доцільне в рядах з нерівними інтервалами, а надто в атрибутивних рядах.

За аналогією з коефіцієнтом концентрації обчислюється коефіцієнт подібності (схожості) структур двох сукупностей:

.

Якщо структури однакові, Р = 1; якщо абсолютно протилежні, Р = 0. Чим більше схожі структури, тим більше значення Р. За наведеними у табл. 5.10 даними про галузеву структуру зайнятості населення у двох країнах коефіцієнт подібності структур становить:

,

тобто розподіл зайнятих за галузями економіки відхиляється в середньому на 18 п. п.

Таблиця 5.10

ГАЛУЗЕВА СТРУКТУРА ЗАЙНЯТОСТІ НАСЕЛЕННЯ

Країна

Структура зайнятих, %

Сільське господарство

Промисловість та будівництво

Сфера послуг

А

36

24

40

В

25

42

33

Структура будь-якої статистичної сукупності динамічна. Змінюються склад і технічний рівень виробничих фондів, вікова й професійна структура робітників, склад і якість залучених до виробництва природних ресурсів, асортимент і якість продукції, що виробляється, структура споживчого бюджету тощо. Зміна часток окремих складових сукупності свідчить про структурні зрушення. Так, за даними табл. 5.11 структура спожитого в регіоні палива (у перерахунку на умовне) змінилася: зменшились частки газу та мазуту, зросли частки вугілля та інших видів палива. Інтенсивність структурних зрушень оцінюється за допомогою середнього лінійного або середнього квадратичного відхилень часток:

;

,

де dj0 та dj1 — частки відповідно базисного та поточного періоду; m — число складових сукупності.

Таблиця 5.11

СТРУКТУРА ТА СТРУКТУРНІ ЗРУШЕННЯСПОЖИВАННЯ ПАЛИВА ПО РОКАХ

Вид палива

1995 р.,d0

2000 р.,d1

Відхилення часток,d1 – d0

Модулі відхилень,

Квадрати відхилень,

Вугілля

29

42

13

13

169

Газ

23

16

– 7

7

49

Мазут

45

36

– 9

9

81

Інші види

3

6

+ 3

3

9

Разом

100

100

0

32

308

Лінійний коефіцієнт структурних зрушень становить , тобто частки окремих видів палива змінилися в середньому на 8 п. п. Завдяки своїм математичним властивостям квадратичний коефіцієнт структурних зрушень дещо більший — п. п.

Види та взаємозв'язок дисперсій

Дисперсія посідає особливе місце у статистичному аналізі соціально-економічних явищ. На відміну від інших характеристик варіації завдяки своїм математичним властивостям вона є невіддільним і важливим елементом інших статистичних методів, зокрема дисперсійного аналізу.

Для ознак метричної шкали дисперсія — це середній квадрат відхилень індивідуальних значень ознаки від середньої:

.

Як і будь-яка середня, дисперсія має певні математичні властивості. Сформулюємо найважливіші з них.

1. Якщо всі значення варіант xj зменшити на сталу величину А, то дисперсія не зміниться:

.

2. Якщо всі значення варіант xj змінити в А раз, то дисперсія зміниться в A2 раз:

.

3. Якщо частоти замінити частками, дисперсія не зміниться.

Нескладними алгебраїчними перетвореннями можна довести, що дисперсія — це різниця квадратів . Якщо

,

то, замінивши і поділивши всі складові на n, дістанемо:

,

де — квадрат середньої величини; — середній квадрат значень ознаки.

Дисперсія альтернативної ознаки обчислюється як добуток часток: , де — частка елементів сукупності, яким властива ознака, — частка решти елементів . Застосуємо основну формулу дисперсії до цих характеристик структури:

Якщо, скажімо, у збиральному цеху частка висококваліфікованих робітників становить , то дисперсія частки .

Дисперсія альтернативної ознаки широко використовується при проектуванні вибіркових обстежень, обробці даних соціологічних опитувань, статистичному контролі якості продукції тощо. За відсутності первинних даних про розподіл сукупності припускають, що і використовують максимальне значення дисперсії (див. підрозд. 6.4).

Якщо сукупність розбито на групи за певною ознакою х, то для будь-якої іншої ознаки у можна обчислити дисперсію як у цілому по сукупності, так і в кожній групі. Центром розподілу сукупності в цілому є загальна середня , центром розподілу в j-й групі — групова середня . Відхилення індивідуальних значень ознаки у від загальної середньої можна подати як дві складові: . Узагальнюючими характеристиками цих вiдхилень є дисперсії: загальна, групова та міжгрупова.

Загальна дисперсія характеризує варіацію ознаки у навколо загальної середньої:

.

Групова дисперсія характеризує варіацію відносно групової середньої:

.

Оскільки в групи об'єднуються певною мірою схожі елементи сукупності, то варіація в групах, як правило, менша, ніж у цілому по сукупності. Якщо причинні комплекси, що формують варіацію в різних групах, неоднакові, то й групові дисперсії різняться між собою.

Узагальнюючою мірою внутрішньогрупової варіації є середня з групових дисперсій:

.

Різними є й групові середні . Мірою варіації їх навколо загальної середньої є міжгрупова дисперсія

Loading...

 
 

Цікаве