WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Ряди розподілу. аналіз варіацій та форми розподілу - Реферат

Ряди розподілу. аналіз варіацій та форми розподілу - Реферат

Окрім типового рівня важливе значення має домінанта, тобто найбільш поширене значення ознаки. Таке значення називають модою (Мо). У дискретному ряду моду визначають безпосередньо за найбільшою частотою (часткою). Наприклад, якщо депозитна ставка у восьми комерційних банків — 12% річних, а в двох — 10%, то модальною є ставка 12%.

В інтервальному ряду за тим самим принципом визначається модальний інтервал, а в разі потреби конкретне модальне значення в середині інтервалу обчислюється за інтерполяційною формулою

,

де та h — відповідно нижня межа та ширина модального інтервалу, , , — частоти (частки) відповідно модального, передмодального та післямодального інтервалів.

За даними табл. 5.4 модальним є інтервал 7 — 9, що має найбільшу частоту ; ширина модального інтервалу h = 2; нижня межа х0 = 7; передмодальна частота = 39, післямодальна — = 42. За такого співвідношення частот модальне значення забезпеченості населення житлом:

= 8,1 м2.

Для моди як домінанти число відхилень (х – Мо) мінімальне. Оскільки мода не залежить від крайніх значень ознаки, то її доцільно використовувати тоді, коли ряд розподілу має невизначені межі.

Характеристикою центра розподілу вважається також медіана (Ме) — значення ознаки, яке припадає на середину впорядкованого ряду, поділяє його навпіл — на дві рівні за обсягом частини. Визначаючи медіану, використовують кумулятивні частоти або частки . У дискретному ряду медіаною буде значення ознаки, кумулятивна частота якого перевищує половину обсягу сукупності, тобто (для кумулятивної частки ).

В інтервальному ряду за цим принципом визначають медіанний інтервал, а значення медіани в середині інтервалу, як і значення моди, обчислюють за інтерполяційною формулою:

,

де x0 та h — відповідно нижня межа та ширина медіанного інтервалу; fme — частота медіанного інтервалу; — кумулятивна частота передмедіанного інтервалу.

За даними табл. 5.4 половина обсягу сукупності припадає на інтервал 7 — 9 з частотою = 51; передмедіанна кумулятивна частота = 56. Отже, медіана забезпеченості населення житлом:

м2.

У симетричному розподілі всі три зазначені характеристики центра розподілу однакові: , у помірно асиметричному відстань медіани до середньої втричі менша за відстань середньої до моди, тобто . Саме таке співвідношення характеристик центра розподілу в розглянутому прикладі:

3 (9 – 8,7) = 9 – 8,1.

Медіана, як і мода, не залежить від крайніх значень ознаки; сума модулів відхилень варіант від медіани мінімальна, тобто вона має властивість лінійного мінімуму:

.

Цю властивість медіани можна використати при проектуванні розміщення зупинок міського транспорту, заготівельних пунктів тощо.

Окрім моди і медіани, в аналізі закономірностей розподілу використовуються також квартилі та децилі. Квартилі — це варіанти, які поділяють обсяги сукупності на чотири рівні частини, децилі — на десять рівних частин. Ці характеристики визначаються на основі кумулятивних частот (часток) за аналогією з медіаною, яка є другим квартилем або п'ятим децилем.

У ряду розподілу (див. табл. 5.4) перший квартиль становить 6,7 м2, перший дециль — 5,2 м2, дев'ятий — 13,3 м2 :

;

;

.

Отже, у 25% сімей забезпеченість житлом не перевищує 6,7 м2, серед 10% малозабезпечених найвищий рівень становить 5,2 м2, а серед 10% найбільш забезпечених нижня межа — 13,3 м2.

Характеристики варіації

В одних сукупностях індивідуальні значення ознаки щільно групуються навколо центра розподілу, в інших — значно відхиляються. Чим менші відхилення, тим однорідніша сукупність, а отже, тим більш надійні й типові характеристики центра розподілу, передусім середня величина. Вимірювання ступеня коливання ознаки, її варіації — невід'ємна складова аналізу закономірностей розподілу. Міри варіації широко використовуються у практичній діяльності: для оцінювання диференціації домашніх господарств за рівнем доходу, фінансового ризику інвестування, ритмічності роботи підприємств, сталості врожайності сільськогосподарських культур тощо.

На основі характеристик варіації оцінюється інтенсивність структурних зрушень, щільність взаємозв'язків соціально-економічних явищ, точність результатів вибіркового обстеження.

Для вимірювання та оцінювання варіації використовуються абсолютні та відносні характеристики. До абсолютних належать: варіаційний розмах, середнє лінійне та середнє квадратичне відхилення, дисперсії; відносні характеристики подаються низкою коефіцієнтів варіації, локалізації, концентрації.

Варіаційний розмахR — це різниця між максимальним і мінімальним значеннями ознаки: R = xmax – xmin. Він характеризує діапазон варіації, наприклад родючості ґрунтів у регіоні, продуктивності праці в галузях промисловості тощо. Безперечною перевагою варіаційного розмаху як міри варіації є простота його обчислення й тлумачення.

Проте, коли частоти крайніх варіант надто малі, варіаційний розмах неадекватно характеризує варіацію. У таких випадках використовують квартильні або децильні розмахи. Квартильний розмах охоплює 50% обсягу сукупності, децильний — 60% або — 80%.

Інші абсолютні характеристики варіації враховують усі відхилення значень ознаки від центра розподілу, поданого середньою величиною. Оскільки алгебраїчна сума відхилень , то використовуються або модулі відхилень , або квадрати відхилень . Узагальнюючою характеристикою варіації є середнє відхилення:

а) лінійне

;

б) квадратичне, або стандартне

;

в) дисперсія (середній квадрат відхилень)

.

На підставі первинних, незгрупованих даних наведені характеристики обчислюють за принципом незваженої середньої:

або .

Середнє лінійне та середнє квадратичне відхилення є безпосередніми мірами варіації. Це іменовані числа (в одиницях вимірювання ознаки), за змістом вони ідентичні, проте завдяки математичним властивостям . Коли обсяг сукупності досить великий і розподіл ознаки, що варіює, наближається до нормального, то , а . Значення ознаки в межах мають 68,3% обсягу сукупності, у межах — 95,4%, у межах — 99,7%. Це відоме "правило трьох сигм". При значній асиметрії розподілу (див. підрозд. 5.4) розрахунок не має сенсу.

На основі взаємозв'язку між варіаційним розмахом R, середнім квадратичним відхиленням і чисельністю сукупності nР. Пірсон обчислив коефіцієнти k, за допомогою яких орієнтовно можна визначити середнє квадратичне відхилення за варіаційним розмахом: . Значення коефіцієнтів k наведено в табл. 5.5.

Таблиця 5.5

КОЕФІЦІЄНТИ k ДЛЯ РІЗНОГО ОБСЯГУ СУКУПНОСТІ

n

10

20

30

40

50

100

200

k

0,32

0,27

0,24

0,23

0,22

0,20

0,18

Очевидний взаємозв'язок середнього квадратичного відхилення та дисперсії: . Дисперсія входить до більшості теорем теорії ймовірностей, які є фундаментом математичної статистики, і широко використовується для вимірювання зв'язку й перевірки статистичних гіпотез. Види та властивості дисперсій розглядаються в підрозд. 5.5.

Loading...

 
 

Цікаве