WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Шпаргалка Інтегральне числення - Реферат

Шпаргалка Інтегральне числення - Реферат

6. Властивості неперервної ф-ії двох змінних

Теорема. Якщо ф-ія неперервна в точці, то вона обмежена деяким околом цієї точки.

Теорема. Якщо ф-ії f(x;y) та g(x;y) неперервні в точці (x0;y0), то в цій точці будуть неперервними f(x;y)g(x;y), f(x;y)g(x;y), f(x;y)/g(x;y) при g(x0;y0)0

Теорема. Якщо ф-ія неперервна на замкнутій множині, то вона обмежена на цій площині.

Теорема. Якщо ф-ія неперервна на замкнутій обмеженій множині, то серед її значень є як найменші, так і найбільші.

Теорема. (про нуль неперервної ф-ії): Нехай ф-ія неперервна на зв'язній множині D і приймає у двох точках А і В цієї множини значення різних знаків. тоді у множині D знайдеться така точка, що в ній ф-ія обертається в нуль.

Теорема. (про проміжне значення): Нехай ф-ія f(x;y) неперервна на зв'язаній множині D і у двох будь-яких точках А та В цієї множини вона приймає будь-яке значення , яке лежить між f(A) і (B), тобто існує така точка cD, що f(c)=.

ДИФЕРЕНЦІЙОВНІСТЬ Ф-ІЇ ДВОХ ЗМІННИХ

1. Частковий та повний прирости ф-ії двох змінних.

Різницею називають повним приростом ф-ії при переході від точки (х0;у0) до точки і позначають z. Різницюназивають Частковим приростом по х, а різницю - частковим приростом по у.

Аналогічно визначаються прирости ф-ії більш ніж двох змінних.

2. Диференційовність ф-ії двох змінних

Ф-ія називається диференційовною у точці (х0;у0), якщо її повний приріст z можливо подати у вигляді: , де А, В – числа, ,  – нескінченно малі при x0, y0.

Головна лінійна структура приросту ф-ії, тобто Ах+Ву називається повним диференціалом ф-ії (першим диференціалом) f(x;y) в точці x0, y0 і позначається dz:

Теорема: Якщо ф-ія z=f(x;y) диференційовна в точці (x0,y0), тоді існують границі:

Означення: Нехай ф-ія z=f(x;y) визначена в точці (х0;у0) і в її деякому околу. Якщо існує , то вона називається частинною похідною по х (по у) функції в точці (х0;у0) і позначається або .

3. Достатня умова диференційовності ф-ії двох змінних у точці

Існування частинних похідних – необхідна, ала не достатня умова диференційовності ф-ії двох змінних в точці.

Теорема: Якщо ф-ія z=f(x;y) в деякому околу точки (х0;у0) має неперервні частинні похідні, то вона диференційовна в точці (х0;у0).

4. Диференціювання складної ф-ії

Теорема: Нехай на множині D визначена складна ф-ія z=f(u;v), де u=u(x;y), v=v(x;y) і нехай ф-ії u(x;y), v(x;y) мають у деякому околу точки (х0;у0)D неперервні частинні похідні, а ф-ія z=f(u;v) має неперервні частинні похідні в деякому околу точки (u0;v0), де u0=u(x0;y0), v0=v(x0;y0). Тоді складна ф-ія z=f(u(x,y);v(x,y)) диференційовна в точці (х0;у0), причому

5. Похідна за напрямом. Градієнт

Означення: Нехай ф-ія z=f(x;y) визначесна в деякому околі точки P0=(x0;y0); l деякий промінь з початком в точці P0=(x0;y0); P=(x;y) – точка на цьому промені, яка належить околу, що розглядається, – околу точки P0=(x0;y0); l – довжина відрізка P0Р. Границя , якщо вона існує, називається похідною ф-ії z=f(x;y) за напрямом в точці Р0 і позначається

В частинному випадку, є похідна ф-ії z=f(x;y) за доданим напрямом осі Ох , а – за напрямом осі Оу.

Похідна за напрямом характеризує швидкість зміни ф-ії z=f(x;y) в точці P0=(x0;y0) за напрямом .

Теорема: Якщо ф-ія z=f(x;y) має в точці P0=(x0;y0) неперервні частинні похідні, тоді в цій точці існує неперервна похідна за будь-яким напрямом причому де – значення частинний похідних в точці P0=(x0;y0).

Означення: Вектор з координатами , який характеризує напрям максимального зростання ф-ії z=f(x;y) в точці P0=(x0;y0)

6. Частинні похідні і повні диференціали вищих порядків

Означення: Диференціалом другого порядку від ф-ії z=f(x;y) називається диференціал від її повного диференціалу, тобто d2z=d(dz). Аналогічно визначають диференціали третього і вищого порядків.

Теорема: Якщо ф-ія z=f(x;y) визначена в області D, в цій області існують перші похідні і , другі змішані похіднііі похідні іяк ф-ії від х і у неперервні в точці (х0;у0), тоді в цій точці

7. Похідна неявної ф-ії

Якщо існує неперервна ф-ія однієї змінної y=f(x) така, що відповідні пари (x;y) задовольняють умову F(x;y), тоді ця цмова називається неявною формою ф-ії f(x), сама ф-ія f(x) називається неявною ф-ією, яка задовольняє умову F(x;y)=0.

Припустимо, що неперервна ф-ія y=f(x) задана в неявній формі F(x;y)=0 і що . Похідна знаходиться за формулою:

Аналогічно частинні похідні ф-ії двох незалежних змінних z=f(x;y), яка задана за допомогою рівняння F(x;y;z)=0 де F(x;y;z) – диференційовна ф-ія змінних x,y,z, можуть бути обчислені за формулами:

за умови, що

8. Формула Тейлора для ф-ії двох змінних

Розглянемо ф-ію двох змінних z=f(x;y). Припустимо, що в околу заданої точки (x0;y0) ця ф-ія має неперервні похідні всіх порядків, до n+1 включно. Надамо x0 і y0 деякі прирости x і y так, щоб прямолінійний відрізок, який з'єднує точки (x0;y0) і (x0+x;y0+y), не вийшов за межі околу, що розглядається. Тоді формула Тейлора:

___

ДЩСЛІДЖЕННЯ Ф-ІЇ ДВОХ ЗМІННИХ

1. Екстремум ф-ії двох змінних

Означення: Нехай ф-ія z=f(x;y) визначена в деякому околі точки (x0;y0) і неперервна в цій точці. Якщо для всіх точок (x;y) цього околу виконується нерівність , тоді ця точка (x0;y0) називається точкою максимуму (мінімуму) ф-ії z=f(x;y).

Точки максимуму і мінімуму наз. точками екстремуму.

Теорема (необхідна умова екстремуму): Якщо ф-ія z=f(x;y) має екстремум в точці (x0;y0), тоді в цій точці частинні похідні іабо дорівнюють нулю, або хоча б одна з них не існує.

Теорема (достатня умова екстремуму): Нехай ф-ія має екстремум у точці (x0;y0), неперервні частинні похідні першого і другого порядку, причомута а також . Якщо:

  1. AC-B2>0 і A<0 тоді (x0;y0) точка максимуму

  2. AC-B2>0 і A>0 тоді точка мінімуму

  3. AC-B2<0 екстремуму немає

  4. AC-B2=0

2. Умовний екстремум для ф-ії двох змінних

Нехай на відкритій множині DR2 задано ф-ії u=f(x;y), v=(x;y) і Е – множина точок, що задовольняють рівняння:

Означення: Рівняння називають рівнянням зв'язку, точку (x0;y0)Е називають точкою умовного строгого максимуму ф-ії u=f(x;y) при обмеженнях рівняння.

Точки умовного максимуму та мінімуму називають точками умовного екстремуму. Умовний екстремум інколи називають відносним екстремумом.

3. Прямий метод знаходження точок умовного екстремуму (метод виключення)

Якщо рівняння зв'язку (x;y)=0 можна розв'язати відносно змінної y, наприклад, y=1(x), тоді дослідження ф-ії y=f(x;y) на умовний екстремум зводиться до дослідження на звичайний (безумовний) екстремум ф-ії однієї змінної:

ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ПЕРШОГО ПОРЯДКУ

1. Вводні означення

Означення: Дифуром називається рівняння, яку містить шукану похідну ф-ії. Найбільший порядок похідних називається порядком диф.рівняння.

Loading...

 
 

Цікаве