WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Шпаргалка Інтегральне числення - Реферат

Шпаргалка Інтегральне числення - Реферат

Шпаргалка

Інтегральне числення

Невизначений інтеграл

1. Поняття первісної

Означення: Функція F(x) називається первісною для ф-ії f(x) на проміжку І, якщо на цьому проміжку F`(x)=f(x) або dF(x)=f(x)dx.

Із означення виходить, що первісна F(x) – диференційована, а значить неперервна функція на проміжку І, і її вигляд суттєво залежить від проміжку, на якому вона розглядається.

Теорема про множину первісних

Якщо F(x) – первісна для функції f(х) на проміжку І, то:

  1. F(x)+С – також первісна для f(x) на проміжку І;

  2. будь-яка первісна Ф(х) для f(x) може біти представлена у вигляді Ф(х)= F(x)+С на проміжку І. (Тут С=const називається довільною сталою).

2. Невизначений інтеграл. Задача інтегрування

Означення: Операція знаходження первісних для ф-ії f(x) називається інтегруванням.

Задача інтегрування функції на проміжку полягає в тому, щоб знайти всі первісні функції на цьому проміжку. Для розв'язання задачі інтегрування функції достатньо знайти одну будь-яку первісну на розглядуваному проміжку, наприклад F(x), тоді (за теоремою про множину первісних) F(x)+С – загальний вигляд всієї множини первісних на цьому проміжку.

Означення: Ф-ія F(x)+С, зо являє собою загальний вигляд всієї множини первісних для ф-ії f(x) на проміжку І і позначається

де f(x) – підінтегральна ф-ія; f(x)dx – підінтегральний вираз; dx – диференціал змінної інтегрування.

Теорема Коші. Для існування невизначеного інтеграла для ф-ії f(x) на певному проміжку достатньо, щоб f(x) була неперервною на цьому проміжку.

Неінтегровні інтеграли – які неможливо записати через основні елементарні ф-ії.

3. Властивості невизначеного інтеграла

Властивості, що випливають із означення невизн. інт:

І. похідна від невизначеного інтеграла дорівнює підінтегральній ф-ії:

ІІ. Диференціал від невизначеного інтеграла дорівнює підінтегральному виразу.

ІІІ.

Властивості, що відображають основні правила інтегрування:

IV. Сталий множник, що не дорівнює нулю, можна виносити з-під знака інтеграла.

V. Невизн. інтеграл від суми функцій дорівнює сумі невизначених інтегралів від цих функцій, якщо вони існують.

4. Інтегрування розкладом

Базується на 5-й властивості невизначеного інтеграла. Мета – розкласти підінтегральну ф-ію на такі доданки, які простіше інтегрувати.

5. Інтегрування частинами

Теорема: Якщо функції u(x) та v(x) мають неперервні похідні, то:

На практиці ф-ії u(x) та v(x) рекомендується вибирати за таким правилом: при інтегруванні частинами підінтегральний вираз f(x)dx розбивають на два множники типу udv, тобто f(x)dx=udv; при цьому ф-ія u(x) вибирається такою, щоб при диференціюванні вона спрощувалася, а за dv приймають залишок підінтегрального виразу, який мітить dx, інтеграл від якого відомий, або може бути просто знайдений.

Деякі типи інтегралів і їх заміни:

v(x):

де Р(х) – многочлен, Q(x) – алгебраїчна ф-ія.

6. Метод підстановки

Мета – перетворити інтеграл до такого вигляду, який простіше інтегрувати.

Теорема. Якщо f(x) – неперервна, а x=(t) має неперервну похідну, то:

Наслідок.

7. Метод безпосереднього інтегрування

В цьому методі використ. формула

варіанту заміни змінної, але саму змінну не записують (роблять усно) При цьому використовують операцію внесення ф-ії під знак диференціала.

Через це, якщо: , то:

Під знак диференціала можна вносити будь-який сталий доданок – значення диференціалу від цього не зміниться.

8. Інтегрування раціональних ф-ій

Означення: Відношення двох многочленівназивається раціональним дробом.

Означення: Раціональний дріб правильний, якщо степінь многочлена в чисельнику менший степеня многочлена в знаменнику, тобто n

Найпростіші раціональні дроби (4 типи):

1. 2. 3. 4.

де k2, kN, D=p2-4q<0

Теорема: Будь-який правильний раціональний нескоротний дріб можна представити у вигляді скінченого числа найпростіших дробів використовуючи такі правила:

1) Якщо Qm(x)=(x-a)kgm-k(x), то:

2) Якщо Qm(x)=(x2+px+q)kgm-2k(x), то:

де Аі, Ві, – деякі коефіцієнти, та правильні раціональні дроби.

Методика інтегрування раціональних ф-ій:

1. Якщо підінтегральна ф-ія – неправильний раціональний дріб, то за допомогою ділення його розкладають на суму многочлена і правильного раціонального дробу.

2. Знаменник правильного раціон. дробу розкладають на множники. По вигляду знаменника, правильний раціон. дріб представляють у вигляді найпростіших дробів, використовуючи метод невизначених коефіцієнтів.

3. Інтегрують цілу частину і найпростіші дроби.

9. Інтегрування тригонометричних функцій

Розглянемо R(sin x,cos x)dx, де R – раціональна ф-ія відносно sin, cos, тобто над sin, cos викон. лише арифметичні дії та піднесення до цілого степеня. Існують такі підстановки, що за їх допомогою інтеграл R(sinx,cosx)dx завжди може бути зведений до інтеграла від раціональної ф-ії R*(t)dt, загальна схема інтегрування якої розроблена.

1) Універсальна тригонометрична підстановка . На практиці універсальну тригонометричну підстановку використовують, якщо sin x, cos x входять в невисокому степені, інакше підрахунки будуть складні.

2) Підінтегральна ф-ія – непарна відносно sin x, тоді роблять підстановку cos x = t.

3) Підінтегральна ф-ія – непарна відносно cos x раціоналізується за допомогою підстановки sin x = t.

4) Підінтегральна ф-ія R(sin x, cos x) – парна по sinx, cosxсукупно, тобто R(-sinx,-cosx)=R(sinx,cosx). В цьому випадку використовують підстановку tgx=t або ctgx=t.

5) Підінтегральна ф-ія R(tgx) раціоналізується підстановкою tgx=t.

В інтегралах sin2nxcos2mxdx рекомендується скористатися формулами зниження степеня.

10. Інтегрування ірраціональних функцій.

1)

2)

3)

Підінтегральна ф-ія після виділення повного квадрата і заміни раціоналізується тригонометричними підстановками.

ВИЗНАЧЕНИЙ ІНТЕГРАЛ

1. Поняття визначеного інтеграла

Означення: Якщо існує скінченна границя інтегральних сум Sn при і0 і не залежить ні від способу розбиття [a;b] на частини хі, ні від вибору точок і, то ця границя називається визначеним інтегралом від ф-ії f(x) на проміжку [a;b] і позначається:

За означенням, визначений інтеграл – число, яке залежить від типу ф-ії f(x) та проміжку [a;b]; він не залежить від того, якою буквою позначена змінна інтегрування.

Ф-ія, для якої на інтервалі існує визначений інтеграл називається інтегровною.

2. Властивості визначеного інтеграла

1) Якщо f(x)=c=const, то

2) Сталий множник можна виносити з-під знака визначеного інтеграла.

3) Якщо f1(x) та f2(x)інтегровні на [a;b], то:

4) Якщо у визначеному інтегралі поміняти місцями межі інтегрування, то інтеграл лише змінить свій знак на протилежний.

5) Визначений інтеграл з однаковими межами інтегрування дорівнює нулю.

6) Якщо f(x) – інтегровна в будь-якому із проміжків [a;b], [a;c], [c;b], то:

7) Якщо f(x)0 і інтегровна для x[a,b], b>a, то

8) Якщо f(x), g(x) – інтегровні та f(x)g(x) для x[a;b], b>a, то:

9) Якщо f(x) – інтегровна та mf(x)M, для x[a;b], b>a, то

10) (Теорема про середнє): Якщо ф-ія f(x) – неперервна для x[a;b], b>a, то знайдеться така точка x= c [a;b], що:

3. Поняття визначеного інтеграла із змінною верхньою межею інтегрування, формула Ньютона-Лейбніца.

Теорема: Якщо ф-ія f(x) неперервна для будь-якого x[a;b], то похідна від інтеграла із змінною верхньою межею інтегрування по цій межі дорівнює підінтегральній ф-ії від верхньої межі інтегрування, тобто:

Loading...

 
 

Цікаве