WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Шпаргалка - Реферат

Шпаргалка - Реферат

або:

Отже, подвійний інтеграл є прямим узагальненням поняття звичайного визначеного інтеграла на випадок двох змінних. Обчислення подвійного інтегралу зводиться до обчислення повторного інтегралу:

(ІІІ)18) Диференційні рівняння І порядку з відокремленими та відокремлюваними змінними.

Означення: Диф. Рівнянням називається рівняння, яке містить шукану похідну ф-ції. Найбільший порядок похідних називається порядком диференційного рівняння.

Означення: Д.Р. вигляду M(x)dx+N(y)dy=0 називаються Д.Р. з відокремленими змінними. Загальний розв'язок має вигляд:

M(x)dx+N(y)dy=C і розв. Задачі Коші з початковими умовами х=х0, у=у0 має вигляд:

Означення: Д.Р. виду N1(y)M1(x)dx+M2(x)N2(y)dy=0 називаються Д.Р. з відокремлюваними змінними, тобто рівняння, що зводяться до рівнянь з відокремленими змінними.

(ІІІ)19) Однорідні і лінійні диференційні рівняння І порядку.

Означення: Д.Р. називається однорідним, якщо його можна подати у вигляді:

Воно за допомогою заміни змінної y/x=u y=ux зводиться до Д.Р. з відокремлюваними змінними.

та знаходження розв'язку зводиться до квадратур:

Лінійні Д.Р. І порядку.

Означення: Д.Р. виду y'+P(x)y=Q(x) називається лінійним Д.Р. Якщо Q(x)0, то Д.Р. є однорідним, якщо Q(x)0, то неоднорідним.

Рішення лінійного Д.Р. І порядку:

y'+P(x)y=Q(x)

y=uv

y'=u'v+v'u

u'v+v'u+P(x)uv=Q(x)

u'v+u(v'+P(x)v)=Q(x)

v'+P(x)v=0

u'v=Q(x)

(ІІІ)20) Лінійні Д.Р. ІІ порядку з сталими коефіцієнтами.

В загальному випадку Д.Р. ІІ порядку має вигляд F(x,y,y',y'')=0. Загальний розв'язок рівняння містить 2 довільні сталі y=(x,C1,C2) і за рахунок вибору C1 і С2 можна розв'язати задачу Коші, яка полягає в пошуку частинного розв'язку y=y(x), що задовольняє початковій умові y(x0)=y0, y'(x0)=y0'.

Однорідні.

Означення: Рівняння вигляду y''+a1y'+a2y=0 називаються однорідними лінійними Д.Р.

Розв'язок:

y''+a1y'+a2y=0

Складаємо характеристичне рівняння:

K2+a1K+a2=0

А) D>0

Б) D=0, K1,2= –b/2

В) D<0, K1,2 – комплексні числа. K1,2=XI

Зі спеціальною правою частиною.

А) f(x)=Pn(x);

Б)

В)

(IV)21) Числові ряди.

Означення: числовим рядом є вираз, який має вигляд суми нескінченої послідовності доданків: U1+U2+U3+...+Un+...(1), де U1 – перший член ряду, U2 – другий, а Un – n-член, або загальний член ряду.

Утворимо так звані часткові суми ряду:

S1=U1

S2=U1+U2

..............................

Sn=U1+U2+U3+...+Un+...

..............................

Означення: Ряд (1) називають збіжним, якщо:

тобто сума існує. Ряд (1) коротко можна записати:

(1')

Якщо ряд (1) збіжний, то пишуть:

Означення: якщо:

то ряд (1) називають розбіжним рядом, такий ряд суми не має.

Різницю між сумою S ряду і n-початковою сумою називають залишком ряду і позначають:

Rn=S-Sn. Якщо ряд збіжний, то:

V)22) Необхідна ознака збіжності.

Теорема: Якщо ряд

збіжний, то:

Доведення: Оскільки ряд збіжний, то:

поряд з цією рівністю для збіжного ряду можна записати:

Ця ознака є лише необхідною умовою збіжності. Якщо вона не виконується, то ряд розбіжний, якщо виконується, то ряд може бути як збіжним, так і розбіжним.

(IV)23)Достатня ознака збіжності для знакододатних рядів.

(Ознака порівняння рядів; ознака Даламбера; радикальна ознака Коші; інтегральна ознака Коші)

Означення: знакододатний ряд – ряд вигляду U1+U2+...+Un+..., всі члени якого є додатними.

1) Ознака порівняння рядів.

Складаємо геометричний прогресію або гармонійний ряд і порівнюємо. Якщо порівняємо з розбіжним рядом, всі члени якого менше відповідних членів шуканого ряду, то шуканий ряд – теж розбіжний, якщо більшіші, то шуканий ряд – збіжний. Якщо порівнюємо із збіжним рядом, всі члени якого більше відповідних членів шуканого ряду, то шуканий ряд – теж збіжний, якщо менші, то шуканий ряд є розбіжним.

Гармонійний ряд – ряд вигляду:

Приклад:

Порівнюємо з гармонійним рядом, який є розбіжний.

маємо:

Ряд розбіжний.

2) Ознака Даламбера:

Якщо для знакододатного ряду

існує

то, якщо:

а)D>1, ряд – розбіжний

б)D<1, ряд – збіжний

в)D=1, –???

3) Радикальна ознака Коші.

а)k<1, ряд – збіжний

б)k>1, ряд – розбіжний

в)k=1, – ???

4) Інтегральна ознака Коші.

Беремо  від Un-члена ряду. Якщо невласний інтеграл збіжний, то ряд – збіжний, якщо ж розбіжний, то ряд – розбіжний.

(IV)24) Знакопочергові ряди. Ознака Лейбніца.

Означення: Знакопочерговий ряд – ряд вигляду:

Для дослідження знакопочергового ряду на абсолютну і умовну збіжність складається ряд з абсолютних величин.

Означення: Знакозмінний ряд називається абсолютно збіжним, якщо збігається ряд із абсолютних величин членів знакозмінного ряду.

Означення: Знакозмінний ряд називається умовно збіжним, якщо цей ряд збігається, а ряд із абсолютних величин його членів розбігається.

Ознака Лейбніца.

Теорема: Якщо члени знакопочергового ряду спадають по абсолютній величині і границя абсолютної величини загального члена ряду = 0, то ряд збігається. Коротко цю теорему можна записати так:

Наслідок1:

Знак суми збіжного знакопочергового ряду такий же, як і знак першого члену ряду.

Наслідок2:

Якщо знакопочерговий ряд збігається, то його сума за абсолютною величиною не перевищує перший член ряду, тобто |S|<|U1|.

Наслідок3:

Якщо при обчисленні суми збіжного знакопочергового ряду обмежитись тільки першими n членами, а всі інші відкинути, то похибка за абсолютною величиною не перевищить першого із відкинутих членів.

Наслідок4:

Якщо для ряду не виконується умова теореми Лейбніца:

то ряд є розбіжним, оскільки не виконується необхідна умова збіжності.

(IV)25) Функціональні ряди. Область збіжності ряду. Степеневі ряди. Теорема Абеля. Інтервал і радіус збіжності степеневого ряду.

Означення: Ряд вигляду U1(x)+U2(x)+...+Un(x)+..., де членами рядуUn(x) є ф-ції від аргументу х, називається функціональним рядом. При х=х0 функціональний ряд перетворюється на на числовий ряд.

Означення: Всі значення аргументу х, при яких функціональний ряд збігається, називаються областю збіжності функціонального ряду.

Степеневі ряди:

Означення: Функціональний ряд вигляду a0+a1x+a2x2+...+anxn+... називається степеневим рядом, його загальний член Un(x)=anxn, а числа а0,а1,а2,...,аn,... – називають коефіцієнтами степеневого ряду. Степеневий ряд можна записати як:

Степеневий ряд може мати вигляд: a0+a1(x-с)+a2(x-с)2+...+an(x-с)n+... Такий ряд за допомогою заміни х-с=у зводиться до звичайного степеневого ряду.

Теорема Абеля.

Якщо степеневий ряд:

1) якщо при х=х0, то він абсолютно збігається для будь-якого х, що задовольняє нерівність |x|<|x0|;

2) якщо ряд розбігається при х=х1, то він розбігається при всіх х, що задовольняють нерівніст |x|>|x1|.

Інтервал і радіус збіжності степеневого ряду.

Як наслідок із теореми Абеля для Степ. Р. існує інтервал збіжності з центром в точці х0.

Означення: Інтервалом збіжності Степ. Ряду називається такий інтервал, у всіх внутрішніх точках якого ряд збігається абсолютно, а для всіх точок |x|>R ряд є розбіжним, при цьому число R>0 називається радіусом збіжності ряду.

Зауваження:

На кінцях інтервалу збіжності, тобто в точках x=-R, x=R ряд може як збігатись, так і розбігатись. Це питання потребує спеціального дослілження в кожному випадку.

Loading...

 
 

Цікаве