WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Числові ряди. поняття збіжності ряду. Необхідна умова збіжності - Реферат

Числові ряди. поняття збіжності ряду. Необхідна умова збіжності - Реферат

(9.8)

 Загальний член ряду . Побудуємо функцію :

.

Збіжність інтегралу Діріхле встановлено в 7.3.1, таким чином, за теоремою 9.11

.

У частинному випадку при р=1 маємо гармонічний ряд який, як тепер встановлено, буде розбіжним.

Рекомендації щодо використання ознакзбіжності рядів з додатними членами

1. Ознака Даламбера, як правило, дає результати тоді, коли загальний член ряду є відношенням алгебраїчного і трансцендентного виразів або відношенням трансцендентних виразів.

Якщо загальний член ряду — алгебраїчний вираз, то ознака Даламбера питання про збіжність не вирішує.

2. Радикальна ознака Коші зручна в тому випадку, коли загальний член ряду містить степенево-показниковий вираз.

3. Інтегральна ознака Коші використовується тоді, коли функція загального члена ряду легко інтегрується.

4. Ознака порівняння рядів може бути використана для рядів з будь-яким загальним членом. При дослідженні ряду за допомогою ознаки порівняння треба вибрати ряд порівняння, збіжність чи розбіжність якого відома. Рядами порівняння зручно вибирати ряд геометричної прогресії (9.6) або ряд Діріхле (9.8).

5. Якщо загальний член ряду — алгебраїчний вираз, тоді для дослідження збіжності ряду зручно використовувати ознаку порівняння рядів у граничній формі (теорема 3), як це було показано на прикладі.

6. При дослідженні збіжності рядів рекомендується така послідовність дій: 1) встановити тип ряду (знакододатний чи знакозмінний); 2) перевірити виконання необхідної умови збіжності; 3) використати одну із достатніх ознак збіжності.

Приклад. Дослідити збіжність ряду .

1) ряд знакододатний.

  1. необхідна умова збіжності виконується (ряд може бути як збіжним, так і розбіжним).

  2. Використаємо достатню ознаку збіжності Даламбера. Побудуємо ряд за ознакою Даламбера збігається.

Знакозмінні ряди. Абсолютна та умовна

збіжність знакозмінних рядів

Означення. Ряд називається знакозмінним, якщо він містить нескінченне число як додатних, так і від'ємних членів.

Теорема 12 (Коші). Якщо збігається ряд із абсолютних величин членів знакозмінного ряду, то збігається і знакозмінний ряд, тобто

Означення. Знакозмінний ряд називається абсолютно збіжним, якщо збігається ряд із абсолютних величин членів знакозмінного ряду.

Означення.Знакозмінний ряд називається умовно збіжним, якщо цей ряд збігається, а ряд із абсолютних величин його членів розбігається.

Зауваження.Якщо знакозмінний ряд збігається абсолютно, то його збіжність зумовлена достатнім спаданням за абсолютною величиною його членів.

Зауваження.Якщо знакозмінний ряд збігається умовно, то його збіжність зумовлена не тільки спаданням за абсолютною величиною його членів, але і взаємною компенсацією додатних і від'ємних членів ряду.

Приклад. Дослідити на збіжність ряд .

 Загальний член ряду залежно від n може бути як додатним, так і від'ємним. Отже, ряд — знакозмінний. Побудуємо ряд із абсолютних величин членів даного: . Цей ряд буде знакододатним , так що для дослідження його на збіжність можна використати ознаки збіжності знакододатних рядів. Скористаємось ознакою порівняння рядів: — ряд порівняння, він збігається, як ряд Діріхле, з p = 2 > 1. Отже, за ознакою порівняння (теорема 9.7) ряд збігається, а це означає, що за теоремою Коші збігається і ряд , причому збігається абсолютно.

Знакопочергові ряди. Ознака Лейбніца

Означення. Ряд, кожний член якого відрізняється знаком від попереднього, називається знакопочерговим. Цей ряд має вигляд:

(9.9)

Загальний член ряду (9.9) де .

Теорема 13 (Лейбніца). Якщо члени знакопочергового ряду спадають за абсолютною величиною і границя абсо-лютної величини загального члена ряду дорівнює нулю, то ряд збігається. Коротко цю теорему можна записати так:

Наслідок 1.Знак суми збіжного знакопочергового ряду такий само, як і знак першого члена ряду (на рис. 9.1 ).

Геометрична інтерпретація

Рис. 9.1

Наслідок 2. Якщо знакопочерговий ряд збігається, то його сума за абсолютною величиною не перевищує першого члена ряду, тобто (на рис. 9.1) 0< S <a1).

Наслідок 3.Якщо при обчисленні суми збіжного знакопочергового ряду обмежитись тільки першими n членами, а всі інші відкинути, то похибка за абсолютною величиною не перевищить першого із відкинутих членів, тобто .

Наслідок 4.Якщо для ряду не виконується умова теореми Лейбніца , то ряд розбігається (не виконується необхідна умова збіжності).

Приклад. Дослідити збіжність ряду Лейбніца

Загальний член ряду почергово змінює знак, отже, ряд Лейбніца — знакопочерговий. Обидві умови теореми Лейбніца для цього ряду виконуються:

1)

2) .

Таким чином, ряд Лейбніца буде збіжним, але збіжність умовна, бо ряд із абсолютних величин: — гармонічний ряд, що розбігається.

Приклад. Скільки членів збіжного ряду треба залишити, щоб обчислити його суму з точністю до 0,001?

З огляду на те, що ряд — знакопочерговий і збіжний, скористаємось наслідком 3. Почергово обчислимо за абсолютною величиною члени ряду, поки не знайдемо такий член, який буде за модулем меншим за 0,001: .

Отже, достатньо залишити п'ять членів ряду.

ЛІТЕРАТУРА

  1. Бугров Я. С., Никольский С. М. Элементы линейной алгебры и аналитической геометрии. — М.: Наука, 1988. — 240 с.

  2. Бугров Я. С., Никольский С. М. Дифференциальное и интегральное исчисление. — М.: Наука, 1988. — 432 с.

  3. Бугров Я. С., Никольский С. М. Дифференциальные уравнения, интегралы, ряды, функции комплексного переменного. — М.: Наука, 1989. — 464 с.

  4. Овчинников П. Ф., Яремчук Ф. П., Михайленко В. М. Высшая математика. — К.: Вища шк., 1987. — 552 с.

  5. Пак В. В., Носенко Й. Л. Вища математика. — К.: Либідь, 1996. — 440 с.

  6. Пискунов Н. С. Дифференциальное и интегральное исчисление. — Т. 1, 2. — М.: Наука, 1985. — 580 с., 602 с.

  7. Збірник задач з вищої математики / За ред. Ф. С.Гудименка. — К.: КУ, 1967. — 352 с.

  8. Клетеник Д. В. Сборник задач по аналитической геометрии. — М.: Наука, 1986. — 224 с.

  9. Берман Г. Н. Сборник задач по курсу математического анализа. — М.: Наука, 1975. — 416 с.

  10. Задачи и упражнения по математическому анализу (для вузов) / Под ред. Б. П. Демидовича. — М.: Наука, 1968. — 472 с.

  11. Стрижак Т. Г., Коновалова Н. Р. Математический анализ. — К.: Либідь, 1995. — 240 с.

Loading...

 
 

Цікаве