WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Основні теореми диференціального числення - Реферат

Основні теореми диференціального числення - Реферат

Реферат на тему:

Основні теореми диференціального числення

Теорема Ферма. Якщо диференційовна на проміжку функція досягає найбільшого або найменшого значення у внутрішній точці цього проміжку, то похідна функції в цій точці дорівнює нулю, тобто

Припустимо, для визначеності, що набуває в точці найбільшого значення, тобто для всіх .

За означенням похідної

,

причому ця границя не залежить від того, як наближається до — справа чи зліва.

Розглянемо відношення .

Для всіх х, достатньо близьких до точки , маємо:

Перейдемо в останніх нерівностях до границі при . Дістанемо

.

Аналогічно розглядається випадок, коли функція набуває в точці найменшого значення.

Геометричний зміст теореми Ферма. Геометричний зміст похідної являє собою кутовий коефіцієнт дотичної до кривої . Звідси рівність нулю похідної геометрично означає, що у відповідній точці цієї кривої дотична паралельна осі Ох.

Теорема Ролля. Якщо функція f (х): 1) неперервна на сегменті [a;b]; 2) диференційовна на інтервалі (а; b); 3) на кінцях сегмента набуває рівних між собою значень, тобто f (a) = f (b), то на інтервалі (а; b) існує хоча б одна точка , для якої

Геометричний зміст теореми Ролля. Якщо крайні ординати неперервної кривої у = f (х), яка має в кожній точці дотичну, рівні, то на цій кривій знайдеться принаймні одна точка з абсцисою , в якій дотична паралельна осі Ох (рис. 4.6).

Рис. 4.6

Теорема Лагранжа (теорема про скінченні прирости функції).

Якщо функція f (х): 1) неперервна на сегменті [a; b]; 2) диференційовна на інтервалі (а; b), то на інтервалі знайдеться хоча б одна точка , така що

(4.15)

Геометричний зміст теореми Лагранжа. Запишемо формулу (4.15) у вигляді

. (4.16)

З рис. 4.7 бачимо, що величина є тангенсом кута нахилу хорди, що проходить через точки А і В графіка функції у = f (х) з абсцисами а і b.

Рис. 4.7

Водночас, — тангенс кута нахилу дотичної до кривої у точці С з абсцисою . Таким чином, геометричний зміст рівності (4.15) або рівносильної для неї рівності (4.16) можна визначити так: якщо для всіх точок кривої у = f (х) існує дотична, то на цій кривій знайдеться точка з абсцисою , в якій дотична паралельна хорді АВ, що сполучає точки А і В.

Теорема Коші. Якщо f (x) і дві функції: 1) неперервні на сегменті [a; b]; 2) диференційовні на інтервалі (а; b); 3) для , то на інтервалі (а; b) знайдеться хоча б одна точка , така що

ЛІТЕРАТУРА

  1. Бугров Я. С., Никольский С. М. Элементы линейной алгебры и аналитической геометрии. — М.: Наука, 1988. — 240 с.

  2. Бугров Я. С., Никольский С. М. Дифференциальное и интегральное исчисление. — М.: Наука, 1988. — 432 с.

  3. Бугров Я. С., Никольский С. М. Дифференциальные уравнения, интегралы, ряды, функции комплексного переменного. — М.: Наука, 1989. — 464 с.

  4. Овчинников П. Ф., Яремчук Ф. П., Михайленко В. М. Высшая математика. — К.: Вища шк., 1987. — 552 с.

  5. Пак В. В., Носенко Й. Л. Вища математика. — К.: Либідь, 1996. — 440 с.

  6. Пискунов Н. С. Дифференциальное и интегральное исчисление. — Т. 1, 2. — М.: Наука, 1985. — 580 с., 602 с.

  7. Збірник задач з вищої математики / За ред. Ф. С.Гудименка. — К.: КУ, 1967. — 352 с.

  8. Клетеник Д. В. Сборник задач по аналитической геометрии. — М.: Наука, 1986. — 224 с.

  9. Берман Г. Н. Сборник задач по курсу математического анализа. — М.: Наука, 1975. — 416 с.

  10. Задачи и упражнения по математическому анализу (для вузов) / Под ред. Б. П. Демидовича. — М.: Наука, 1968. — 472 с.

  11. Стрижак Т. Г., Коновалова Н. Р. Математический анализ. — К.: Либідь, 1995. — 240 с.

Loading...

 
 

Цікаве