WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → ЛІнійні різницеві рівняння зі сталими коефіцієнтами. Задача Коші - Реферат

ЛІнійні різницеві рівняння зі сталими коефіцієнтами. Задача Коші - Реферат


Реферат
З дисципліни "Вища математика"
Розділ 4 "Диференціальні рівняння"
на тему:
"Лінійні різницеві рівняння
зі сталими коефіцієнтами.
Задача Коші"
План
1. Лінійні однорідні диференціальні рівняння
зі сталими коефіцієнтами
1.1. Розв'язування систем однорідних рівнянь
з сталими коефіцієнтами методом Ейлера.
1.2. Розв'язок систем однорідних рівнянь
зі сталими коефіцієнтами матричним методом
1.3. Властивості розв'язків лінійних неоднорідних систем
2. Задача Коші
Використана література
?
1. Лінійні однорідні диференціальні рівняння
зі сталими коефіцієнтами
Система диференціальних рівнянь вигляду
де - сталі величини, називається лінійною однорідною системою з сталими коефіцієнтами. У матричному вигляді вона записується
.
1.1. Розв'язування систем однорідних рівнянь
з сталими коефіцієнтами методом Ейлера.
Розглянемо один з методів побудови розв'язку систем з сталими коефіцієнтами.
Розв'язок системи шукаємо у вигляді вектора
.
Підставивши в систему диференціальних рівнянь, одержимо
Скоротивши на , і перенісши всі члени вправо, запишемо
Отримана однорідна система лінійних алгебраїчних рівнянь має розв'язок тоді і тільки тоді, коли її визначник дорівнює нулю, тобто
.
Це рівняння, може бути записаним у векторно-матричній формі
і воно називається характеристичним (чи віковим) рівнянням. Розкриємо його
.
Алгебраїчне рівняння -го ступеня має -коренів. Розглянемо різні випадки.
1. Всі корені характеристичного рівняння (власні числа матриці ) дійсні і різні. Підставляючи їх по черзі в систему алгебраїчних рівнянь
одержуємо відповідні ненульові розв'язки системи
, , … ,
що являють собою власні вектори, які відповідають власним числам , .
У такий спосіб одержимо - розв'язків
, , … , ...
Причому оскільки -різні а - відповідні їм власні вектори, то розв'язки - лінійно незалежні, і загальний розв'язок системи має вигляд
.
Або у векторно - матричної формі запису
,
де - довільні сталі.
2. Нехай пара комплексно спряжених коренів. Візьмемо один з них, наприклад . Комплексному власному числу відповідає комплексний власний вектор
і, відповідно, розв'язок
Використовуючи залежність , перетворимо розв'язок до вигляду:
.
І, як випливає з властивості 4 розв'язків однорідних систем, якщо комплексна функція дійсного аргументу є розв'язком однорідної системи, то окремо дійсна і уявна частини також будуть розв'язками, тобто комплексним власним числам відповідають лінійно незалежні розв'язки
, .
3. Якщо характеристичне рівняння має кратний корінь кратності , тобто , то розв'язок системи рівнянь має вигляд
.
Підставивши його у вихідне диференціальне рівняння і прирівнявши коефіцієнти при однакових степенях, одержимо - рівнянь, що містять -невідомих. Тому що корінь характеристичного рівняння має кратність , то ранг отриманої системи . Уводячи довільних сталих і розв'язуючи систему, одержимо
, , .
1.2. Розв'язок систем однорідних рівнянь
зі сталими коефіцієнтами матричним методом
Досить універсальним методом розв'язку лінійних однорідних систем з сталими коефіцієнтами є матричний метод. Він полягає в наступному. Розглядається лінійна система з сталими коефіцієнтами, що записана у векторно-матричному вигляді
.
Робиться невироджене перетворення , де вектор - нова невідома векторна функція. Тоді рівняння прийме вигляд
або .
Для довільної матриці завжди існує неособлива матриця , що приводить її до жорданової форми, тобто , де - жорданова форма матриці . І система диференціальних рівнянь прийме вигляд
.
Складемо характеристичне рівняння матриці
, або .
Алгебраїчне рівняння -го ступеня має коренів. Розглянемо різні випадки.
1. Нехай - дійсні різні числа. Тоді матриця має вигляд
.
І перетворена система диференціальних рівнянь розпадається на - незалежних рівнянь
.
Розв'язуючи кожне окремо, отримаємо
.
Або в матричному вигляді
де .
Звідси розв'язок вихідного рівняння має вигляд . Для знаходження матриці треба розв'язати матричне рівняння
або ,
де - жорданова форма матриці . Якщо матрицю записати у вигляді
,
то для кожного з стовпчиків , матричне рівняння перетвориться до
, .
Таким чином, у випадку різних дійсних власних чисел матриця являє собою набір - власних векторів, що відповідають різним власним числам.
2. Нехай - комплексний корінь. Тоді відповідна клітка Жордана має вигляд
,
а перетворена система диференціальних рівнянь
Неважко перевірити, що розв'язок отриманої системи диференціальних рівнянь має вигляд
Або в матричному вигляді
Таким чином, комплексно-спряженим власним числам відповідає розв'язок де
3. Нехай - кратний корінь, кратності , тобто і йому відповідають лінійно незалежних векторів. Тоді клітка Жордана, що відповідає цьому власному числу, має вид
І перетворена підсистема, що відповідає власному числу , розпадається не дві підсистеми
.
.
Розв'язок першої знаходиться з використанням зазначеного в першому пункті підходу. Розглянемо другу підсистему. Запишемо її в координатному вигляді
Розв'язок останнього рівняння цієї підсистеми має вигляд
.
Підставимо його в передостаннє рівняння. Одержуємо
.
Загальний розв'язок лінійного неоднорідного рівняння має вигляд суми загального розв'язку однорідного і частинного розв'язку неоднорідних рівнянь, тобто
.
Загальний розв'язок однорідного має вигляд .
Частинний розв'язок неоднорідного шукаємо методом невизначених коефіцієнтів у вигляді
,
де - невідома стала. Підставивши в неоднорідне рівняння, одержимо
.
Звідси і загальний розв'язок неоднорідного рівняння має вигляд
.
Піднявшись ще на один крок нагору одержимо
.
Продовжуючи процес далі, маємо
.
Або у векторно - матричному вигляді
.
Додавши першу підсистему, одержимо
,
Для останніх двох випадків матриця знаходиться як розв'язок матричного рівняння
.
2. Лінійні неоднорідні рівняння
Система диференціальних рівнянь, що записана у вигляді
чи у векторно-матричному вигляді
називається системою лінійних неоднорідних диференціальних рівнянь.
1.3. Властивості розв'язків лінійних неоднорідних систем
Властивість 1. Якщо вектор є
розв'язком лінійної неоднорідної системи, a розв'язком відповідної лінійної однорідної системи, то сума - є розв'язком лінійної неоднорідної системи.
Дійсно, за умовою
і .
Але тоді і
тобто є розв'язком неоднорідної системи.
Властивість 2 (Принцип суперпозиції). Якщо вектори , є розв'язками лінійних неодноріднихсистем
, ,
де , то вектор , де - довільні сталі буде розв'язком лінійної неоднорідної системи
.
Дійсно, за умовою виконуються - тотожностей
.
Склавши лінійну комбінацію з лівих і правих частин, одержимо
,
тобто лінійна комбінація буде розв'язком системи
.
Властивість 3. Якщо комплексний вектор з дійсними елементами є розв'язком неоднорідної системи , де , , , то окремо дійсна і уявна частини є розв'язками системи.
Дійсно, за умовою
.
Розкривши дужки і перетворивши, одержимо
.
Але комплексні вирази рівні між собою тоді і тільки тоді, коли рівні дійсні та уявні частини, що і було потрібно довести.
Теорема (про загальний розв'язок лінійної неоднорідної системи). Загальний розв'язок лінійної неоднорідної системи складається із суми загального розв'язку однорідної системи і якого-небудь частинного розв'язку неоднорідної системи.
Доведення. Нехай - загальний розв'язок однорідної системи і - частинний розв'язок неоднорідної. Тоді, як випливає з властивості 1, їхня сума буде розв'язком неоднорідної системи.
Покажемо, що цей розв'язок загальний, тобто підбором сталих , можна розв'язати довільну задачу Коші
.
Оскільки - загальний розв'язок однорідного рівняння, то вектори лінійно незалежні і система алгебраїчних рівнянь
має єдине розв'язок , . І лінійна комбінація с отриманими сталими , є розв'язком поставленої задачі Коші.
2. Задача Коші
Нехай - фундаментальна система, нормована при тобто , де - одинична матриця. Загальний розв'язок однорідної системи має вигляд
.
Вважаючи невідомою вектором-функцією і повторюючи викладення методу варіації довільної постійний, одержимо
.
Звідси
.
Проінтегруємо отриманий вираз
.
Тут - вектор із сталих, що отриманий при інтегруванні системи. Підставивши у вихідний вираз, одержимо:
Якщо - фундаментальна матриця, нормована при , то . Звідси
Підставивши початкові значення і з огляду на те, що , одержимо
-
формулу Коші, загального розв'язку неоднорідного рівняння. Частинний розв'язок неоднорідного рівняння, що задовольняє нульовій початковій умові, має вид
.
Якщо система з сталою матрицею , то
.
І формула Коші має вигляд
.
Використана література:
1. Хусаінов П. Диференційні рівняння. - К., 1999.
2. Дубовик В.П. Вища математика. Посібник. - К., 2001.
Loading...

 
 

Цікаве