WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Еліптичні інтеграли - Реферат

Еліптичні інтеграли - Реферат

Реферат

Еліптичні інтеграли

У інтегральному численні еліпти́чний інтегра́л з'явився у зв'язку із завданням обчислення довжини дуги еліпса і був вперше досліджений Джуліо Фаніано і Леонардом Ейлером.

Еліптичні інтеграли є оберненими функціями до еліптичних функцій Якобі. З історичної точки зору спочатку були відкриті еліптичні інтеграли.

Еліптичні інтеграли - це інтеграли виду

та

де — деяка раціональна функція, у випадку, коли ці інтеграли не виражаються через елементарні функції а C - деяка стала. У результаті ряду перетворень можна кожен з таких інтегралів звести до елементарних функцій і до еліптичних інтегралів першого, другого та третього роду, відповідно:

Якщо зробити підстановку , одержимо запис еліптичних інтегралів у лежандровій формі:

Величина називається амплітудою, стала - модулем еліптичного інтегралу, а - параметром.

Еліптичні інтеграли першого роду

Еліптичні інтеграли першого роду

10°

20°

30°

40°

50°

60°

70°

80°

90°

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

10

0.1745

0.1746

0.1746

0.1748

0.1749

0.1751

0.1752

0.1753

0.1754

0.1754

20

0.3491

0.3493

0.3499

0.3508

0.3520

0.3533

0.3545

0.3555

0.3561

0.3564

30

0.5236

0.5243

0.5263

0.5294

0.5334

0.5379

0.5422

0.5459

0.5484

0.5493

40

0.6981

0.6997

0.7043

0.7116

0.7213

0.7323

0.7436

0.7535

0.7604

0.7629

50

0.8727

0.8756

0.8842

0.8982

0.9173

0.9401

0.9647

0.9876

1.0044

1.0107

60

1.0472

1.0519

1.0660

1.0896

1.1226

1.1643

1.2126

1.2619

1.3014

1.3170

70

1.2217

1.2286

1.2495

1.2853

1.3372

1.4068

1.4944

1.5959

1.6918

1.7354

80

1.3963

1.4056

1.4344

1.4846

1.5597

1.6660

1.8125

2.0119

2.2653

2.4362

90

1.5708

1.5828

1.6200

1.6858

1.7868

1.9356

2.1565

2.5046

3.1534

Еліптичні інтеграли другого роду

Еліптичні інтеграли другого роду

10°

20°

30°

40°

50°

60°

70°

80°

90°

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

10

0.1745

0.1745

0.1744

0.1743

0.1742

0.1740

0.1739

0.1738

0.1737

0.1736

20

0.3491

0.3489

0.3483

0.3473

0.3462

0.3450

0.3438

0.3429

0.3422

0.3420

30

0.5236

0.5229

0.5209

0.5179

0.5141

0.5100

0.5061

0.5029

0.5007

0.5000

40

0.6981

0.6966

0.6921

0.6851

0.6763

0.6667

0.6575

0.6497

0.6446

0.6428

50

0.8727

0.8698

0.8614

0.8483

0.8317

0.8134

0.7954

0.7801

0.7697

0.7660

60

1.0472

1.0426

1.0290

1.0076

0.9801

0.9493

0.9184

0.8914

0.8728

0.8660

70

1.2217

1.2149

1.1949

1.1632

1.1221

1.0750

1.0266

0.9830

0.9514

0.9397

80

1.3963

1.3870

1.3597

1.3161

1.2590

1.1926

1.1225

1.0565

1.0054

0.9848

90

1.5708

1.5589

1.5238

1.4675

1.3931

1.3055

1.2111

1.1184

1.0401

1.0000

Повний еліптичний інтеграл другого роду, ілюстроване вище того, як функція , визначається

(1)

(2)

(3)

(4)

Де неповний еліптичний інтеграл другого роду, геометрична функція, і еліптична функція Джакобі.

може бути обчислений в закритій формі і як еліптична алфавітна функція для спеціальні значення , де яке називають еліптичне цілочисельне єдине значення. Інші спеціальні значення включають

(5)

(6)

Повний еліптичний інтеграл другого роду задовольняє відношення

(7)

де і - повні еліптичні інтеграли перших і других видів, відповідно, і і - додаткові інтеграли .Похідними є :

(8)

Вирішення до відмітного вирівнювання:

(9)

Еліптичні інтеграли третього роду

Повні еліптичні інтеграли

Повні еліптичні інтеграли

°

°

°

0

1.5708

1.5708

30

1.6858

1.4675

60

2.1565

1.2111

1

1.5709

1.5707

31

1.6941

1.4608

61

2.1842

1.2015

2

1.5713

1.5703

32

1.7028

1.4539

62

2.2132

1.1920

3

1.5719

1.5697

33

1.7119

1.4469

63

2.2435

1.1826

4

1.5727

1.5689

34

1.7214

1.4397

64

2.2754

1.1732

5

1.5738

1.5678

35

1.7312

1.4323

65

2.3088

1.1638

6

1.5751

1.5665

36

1.7415

1.4248

66

2.3439

1.1545

7

1.5767

1.5649

37

1.7522

1.4171

67

2.3809

1.1453

8

1.5785

1.5632

38

1.7633

1.4092

68

2.4198

1.1362

9

1.5805

1.5611

39

1.7748

1.4013

69

2.4610

1.1272

10

1.5828

1.5589

40

1.7868

1.3931

70

2.5046

1.1184

11

1.5854

1.5564

41

1.7992

1.3849

71

2.5507

1.1096

12

1.5882

1.5537

42

1.8122

1.3765

72

2.5998

1.1011

13

1.5913

1.5507

43

1.8256

1.3680

73

2.6521

1.0927

14

1.5946

1.5476

44

1.8396

1.3594

74

2.7081

1.0844

15

1.5981

1.5442

45

1.8541

1.3506

75

2.7681

1.0764

16

1.6020

1.5405

46

1.8691

1.3418

76

2.8327

1.0686

17

1.6061

1.5367

47

1.8848

1.3329

77

2.9026

1.0611

18

1.6105

1.5326

48

1.9011

1.3238

78

2.9786

1.0538

19

1.6151

1.5283

49

1.9180

1.3147

79

3.0617

1.0468

20

1.6200

1.5238

50

1.9356

1.3055

80

3.1534

1.0401

21

1.6252

1.5191

51

1.9539

1.2963

81

3.2553

1.0338

22

1.6307

1.5141

52

1.9729

1.2870

82

3.3699

1.0278

23

1.6365

1.5090

53

1.9927

1.2776

83

3.5004

1.0223

24

1.6426

1.5037

54

2.0133

1.2681

84

3.6519

1.0172

25

1.6490

1.4981

55

2.0347

1.2587

85

3.8317

1.0127

26

1.6557

1.4924

56

2.0571

1.2492

86

4.0528

1.0086

27

1.6627

1.4864

57

2.0804

1.2397

87

4.3387

1.0053

28

1.6701

1.4803

58

2.1047

1.2301

88

4.7427

1.0026

29

1.6777

1.4740

59

2.1300

1.2206

89

5.4349

1.0008

30

1.6858

1.4675

60

2.1565

1.2111

90

1.0000

Loading...

 
 

Цікаве