WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Метод Коші - Реферат

Метод Коші - Реферат

Реферат на тему:

Метод Коші

Нехай - розв'язок однорідного диференціального рівняння, що задовольняє умовам

Тоді функція

буде розв'язком неоднорідного рівняння, що задовольняє початковим умовам. Дійсно, розглянемо похідні від функції :

І, оскільки , то . Аналогічно

.......................................................

І, оскільки , то

Підставивши функцію і її похідні у вихідне диференціальне рівняння, одержимо

Оскільки - є розв'язком лінійного однорідного рівняння і, отже ,

У такий спосіб показано, що - є розв'язком лінійного неоднорідного рівняння.

Підставляючи в значення одержимо, що .

Для знаходження функції (інтегрального ядра) можна використати такий спосіб. Якщо лінійно незалежні розв'язки однорідного рівняння, то загальний розв'язок однорідного рівняння має вигляд

.Оскільки є розв'язком однорідного рівняння, то його слід шукати у вигляді

.

Відповідні початкові умови мають вигляд

.....................................................................................

.

Звідси

І ядро має вигляд

з одержаними функціями .

Якщо розглядати диференціальне рівняння другого порядку

,

то функція має вигляд

,

де

, .

Звідси

.

Loading...

 
 

Цікаве