WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Квадратичні форми, їх приведення до діагонального (канонічного) вигляду(пошукова робота) - Реферат

Квадратичні форми, їх приведення до діагонального (канонічного) вигляду(пошукова робота) - Реферат

двох із них, або лише одного. Рівняння (4.25) спрощується так само. Різниця лише в тому, що вказані два етапи будуть значно простішими, бо в (4.25) маємо справу не з трьома, а з двома змінними.
Питання про спрощення квадратичних форм розглядалося в попередньому параграфі..
Перший етап. Поворот системи координат.
Знаходимо корені характеристичного рівняння:
Нехай коренями цього рівняння (власними значеннями) відносно є числа .
Тоді рівняння (4.24) можна записати у вигляді (4.28) після того, коли буде знайдене ортогональне перетворення, яке переводить квадратичну форму (4.26) в (4.27). Знаходження ортогонального перетворення потрібне для того, щоб обчислити коефіцієнти в (4.28). Ортогональне перетворення з геометричної точки зору є повертанням системи координат на такий кут, щоб осі координат збігалися з осями симетрії поверхні, якщо вона має три осі симетрії. У випадках двох осей симетрії - щоб дві з осей координатної системи збіглися з осями симетрії, у випадку однієї з осей симетрії - з однією з осей координат.
Другий етап. Паралельне перенесення системи координат.
Тепер матимемо справу з рівнянням (4.28). У ньому мусить бути хоч одне з відмінним від нуля. Для спрощення рівняння (4.28) здійснимо паралельне перенесення системи координат за формулами
(4.29)
Для цього формули (4.29) підставимо в (4.28). Після елементарних перетворень одержимо:
(4.30)
Якщо кожне з не дорівнює нулю, то члени з можна перетворити в нуль, підібравши так, щоб .
Звідси знаходимо
У цьому випадку рівняння поверхні набуває вигляду
(4.31)
де
Поверхня (4.31) буде або еліпсоїдом, або однопорожнинним гіперболоїдом (дійсним чи уявним), або двопорожнинним гіперболоїдом, або єдиною точкою, або конусом, або уявним еліпсоїдом. Читачеві пропонується розібратися в цьому самостійно.
Припустимо, що серед величин одна, наприклад , дорівнює нулю. Тоді в (4.30) неможливо знищити коефіцієнт при (чому?). Тому для визначення потрібно прирівняти до нуля коефіцієнти при і , а також вільний член.
В результаті одержимо поверхню
У цьому випадку будемо мати або еліптичний, або гіперболічний параболоїд, або пару площин, що перетинаються, або пару уявних площин, що перетинаються по спільній дійсній осі. Якщо в (4.31) , то матимемо ще крім того еліптичний циліндр (дійсний або уявний), гіперболічний циліндр. І тут читачеві слід вияснити, за яких умов можуть трапитись вказані випадки.
Нехай серед величин дві, наприклад і , дорівнюють нулю. Тоді (4.30) набере вигляду
(4.32)
Тут, звичайно, можна підібрати так, щоб . Тоді рівність (4.32) запишеться так:
(4.33)
Далі здійснимо підстановку
Вона зведе останню рівність до такої:
.
Звідси
(4.34)
Поверхня (4.34) є параболічним циліндром з твірними, паралельними осі , а його напрямною є парабола.
Якщо в (4.34) , то одержимо рівняння
.
При це рівняння описує пару уявних паралельних площин, а при - пару дійсних паралельних площин.
Якщо в (4.33) , то (4.33) - пара площин, що збігаються.
Зведення рівняння кривої другого порядку до канонічного вигляду здійснюється за тією ж схемою, що й рівняння (4.24). Різниця лише в тому, що змінних тут на одну менше, а тому характеристичне рівняння буде не кубічним, а квадратним; систем рівнянь для знаходження власних векторів буде лише дві і при тому ще кожна система рівнянь складатиметься не з трьох рівнянь, а з двох.
Приклад 2. Визначити, яку криву визначає рівняння
і побудувати її.
Р о з в ' я з о к. Характеристичне рівняння має вигляд
Розв'язавши це рівняння, одержимо . Знайдемо тепер власні вектори. Якщо , маємо таку систему рівнянь для знаходження власного вектора :
Звідси знаходимо .
При маємо систему рівнянь
.
Зводимо власні вектори і до одиничних:
.
Отже, перетворення координат записується так:
.
Лінійна частина рівняння набуває вигляду
Задане рівняння стає таким:
Якщо здійснити в цьому рівнянні паралельне перенесення системи координат за формулами , то, прирівнявши до нуля коефіцієнти при і і розв'язавши відповідну систему рівнянь одержимо
Рівняння відносно і набирає найпростішої (канонічної ) форми:
еліпс.
Отже, дане рівняння є еліпсом (рис. 4.1).
Рис. 4.1
Приклад 3. Визначити, яку поверхню визначає рівняння
.
Р о з в ' я з о к. Характеристичне рівняння має вигляд
.
Коренями цього рівняння є .
Власні вектори:
для
для
Третій власний вектор знайдемо з умови
Одиничні вектори:
Перетворення координат:
Підставивши ці формули в лінійну частину рівняння поверхні другого порядку, одержимо
У нових координатах рівняння буде таким:
Паралельне перенесення за формулами приведе до рівняння
(однопорожнинний гіперболоїд).
Паралельно з цим було знайдено і координати початку координатної системи по відношенню до системи координат :
4.5. Застосування елементів лінійної алгебри в економіці
Для розв'язування багатьох економічних задач використовуються елементи алгебри матриць, теорії систем лінійних алгебраїчних рівнянь. Особливо при розробці і використання баз даних: при роботі з ними майже вся інформація зберігається і обробляється в матричній формі.
4.5.1. Модель Леонт'єва багатогалузевої економіки
Макроекономіка функціонування багатогалузевого господарства вимагає балансу між окремими галузями. Кожна галузь, з одного боку, є виробником, а з іншого - споживачем продукції, що випускається іншими галузями. Виникає досить непроста задача розрахунку зв'язку між галузями через випуск і споживання продукції різного виду. Вперше ця проблема була сформульована у вигляді математичної моделі в працях відомого американського економіста В.Леонт'єва в 1936 р., який спробував проаналізувати причини економічної депресії США 1929-1932 рр. Ця модель основана на алгебрі матриць і використовує апарат матричного аналізу.
Для простоти будемо вважати, що виробнича сфера господарства представляє собою галузей, кожна з яких виробляє свій однорідний продукт. Для забезпечення виробництва кожна галузь потребує продукцію інших галузей. Процес виробництва розглядається за деякий період, наприклад, за рік.
Введемо позначення:
загальний об'єм продукції ої галузі (її валовий випуск);
об'єм продукції ої галузі, що споживається ою галуззю при виробництві об'єму продукції ;
об'єм продукції ої галузі, що призначена для реалізації (споживання) в невиробничій сфері, або так званий продукт кінцевого споживання. До нього відносяться особисте споживання громадян, задоволення суспільних потреб, утримання державних інститутів і т.д.
Балансовий принцип зв'язку різнихгалузей промисловості полягає в тому, що валовий випуск ої галузі повинен дорівнювати сумі об'ємів споживання в виробничій і невиробничій сферах. В найпростішій формі (гіпотеза лінійності) балансові співвідношення мають вигляд
(4.35)
Рівняння (4.35) називаються рівняннями
Loading...

 
 

Цікаве