WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Піфагор Самоський - Реферат

Піфагор Самоський - Реферат

пропорцію:
Велику увагу піфагорійці приділяли дослідженням властивостей прямокутних трикутників, сторони яких визначаються цілими числами. Можна припустити, що найпростіший з таких трикутників, так званий єгипетський трикутник з сторонами 3, 4, 5, був відомий Піфагору ще з часів його подорожі до Єгипту. Піфагор вивів правило знаходження величини сторін таких трикутників. Тепер це правило ми сформулювали б так: нехай а - будь-яке непарне число. Вважатимемо це число довжиною одного з катетів прямокутного трикутника. Віднявши від його квадрата одиницю і поділивши на два, дістанемо величину більшого катета; до величини більшого катета додамо одиницю і дістанемо гіпотенузу. Оскільки а ціле непарне число, то довжини другого катета ігіпотенузи також цілі числа. Те, що в результаті дістаємо справді катети і гіпотенузу прямокутного трикутника, випливає з рівності:
Наприклад, якщо а = 3, то сторони трикутника дорівнюють 3, 4, 5; якщо а = 5, то сторони дорівнюють 5, 12, 13; якщо а = 7, то сторони будуть 7, 24, 25 тощо.
Прямокутний трикутник піфагорійці вважали найкращою і найдосконалішою фігурою. Одним із способів побудови такого трикутника був поділ правильного трикутника пополам. Прямокутні трикутники, довжини сторін яких - цілі числа, утворюють окремий клас, для якого справджується теорема, названа ім'ям Піфагора, хоч вона була відома задовго до нього вавілонянам. За теоремою Піфагора сума площ квадратів, побудованих на катетах прямокутного трикутника, дорівнює площі квадрата, побудованого на гіпотенузі (дивись малюнок).
Можливо, що вивчення властивостей прямокутних трикутників привело піфагорійців до відкриття несумірності відрізків. Але це відкриття суперечило філософській теорії про "гармонію світу". Виявилося, що числом не можна виміряти довжину прямолінійного відрізка - діагоналі квадрата, сторона якого дорівнює одиниці. Пояснити це Піфагор та його учні не могли, тому і тримали своє відкриття в суворій таємниці. Збереглась легенда, що один з піфагорійців, Гіпас, розголосив таємницю про ірраціональне число. Покараний богами за зраду, він загинув у морі під час бурі.
Піфагорійці знали, що сума внутрішніх кутів трикутника дорівнює 2d, що навколо однієї точки на площині можна розмістити 4 квадрати, 6 правильних трикутників, 3 правильні шестикутники. Вони вміли будувати правильний п'ятикутник, але цей спосіб побудови до нас не дійшов.
Евклід у своїх творах приводить цікавий спосіб побудови такого п'ятикутника, в якому не застосовується поділ радіуса описаного кола в кратному і середньому відношенні. Він спочатку будує вписаний рівнобедрений трикутник, у якому кути при основі вдвоє більші від кута при вершині. Кути при основі мають по 72°, а при вершині - 36°. Якщо провести бісектриси кутів при основі, то коло поділиться на 5 рівних частин. (Це окрема задача).
Можливо, що піфагорійцям цей спосіб побудови правильного вписаного п'ятикутника був відомий.
Побудови правильних плоских фігур, зокрема п'ятикутника, а отже, і десятикутника, безпосередньо підвели піфагорійців до побудови правильних многогранників. За свідченнями деяких істориків Піфагор і його учні вміли будувати всі п'яти, видів правильних многогранників і, зокрема, такі складні многогранники, як додекаедр або ікосаедр. Це було на той час значним досягненням.
Деякі з істориків пізнішого часу свідчили, що піфагорійцям було відоме поняття ізогіериметрії. Найпростіша ізопериметрична задача - це знаходження серед усіх кривих даного периметра тієї кривої, яка обмежує фігуру найбільшої площі. Піфагорійці знали розв'язок цієї задачі: кривою є коло. Просторовим аналогом ізопериметричної задачі є задача про відшукання замкненої поверхні заданої площі, яка обмежує тіло найбільшого об'єму. Шуканою поверхнею є сфера. При цьому, на догоду своїм релігійним уявленням про світ, вони стверджували, що куля є найблагородніша просторова фігура, а круг - найдосконаліша плоска фігура.
В оцінці діяльності піфагорійців думки вчених розходяться, бо ніяких письмових документів їхньої школи не залишилось. Проте з впевненістю можна вважати, що Піфагор та його учні своїми дослідженнями внесли вагомий вклад у розвиток еллінської культури.
ЛІТЕРАТУРА
1. Абубакиров Н. Абу Райхан Бируни. "Наука й жизнь", 1973, № 9.
2. Артоболевский Й., Левитский Н. П. Л. Чебишев - создатель синтеза механизмов. "Наука й жизнь", 1972, № 1.
3. Багратуни Г. Г. Карл Фридрих Гаусе. М., Гиз, 1956.
4. Басов Н. Г. Мстислав Всеволодович Келдьіш. "Природа", 1971, № 2.
5. Бородін О., Бугай А. Біографічний словник діячів у галузі математики. К., "Радянська школа", 1973.
6. Ван дер Варден. Пробуждающаяся наука. М., Физматгиз, 1953.
7. Вилейтнер Г. История математики от Декарта до середини XIX столетия. М., Физматгиз, 1956.
8. Воронцова А. А. Софья Ковалевская. М., 1959.
9. Голованов Я. Світочі науки. Етюди про вчених. К., "Веселка", 1970.
10. Епйфанова А. П., Йльйна В. П. Михаил Александрович Лаврентьев. М., "Наука", 1971.
11. Инфельд Д. Зварист Галуа - избранник богов. М., "Молодая гвардия", 1960.
12. Каган В. Лобачевский й его геометрия. М., Гос-техиздат, 1956.
13. Каган В. Архимед. М., Гостехиздат, 1969.
14. Кольман 3. История математики в древности. М., Физматгиз, 1961.
15. Левин В. Й. Рамануджан - математический гений Индии. М., "Знание", 1968.
16. Оре О. Замечательньш математик Нильс Хенрик Абель. М., Физматгиз, 1961.
17. Прудников В. П. Л. Чебьішев. М., "Просвеще-ние", 1964.
18. Пухначев Ю. Метод Лаврентьева. "Наука й жизнь", 1970, № 11.
19. Садыков X. У. Бируни й его работьі по астро-номии. Ташкент, 1963.
20. Салье М. Мухаммед аль-Хорезми - великий узбекский учений. Ташкент, 1954.
21. Смогоржевський О. С. Про геометрію Лобачевського. К., "Радянська школа", 1960.
22. Стройк Д. Коротка історія математики. К., "Радянська школа", 1960.
23. Чистяк ов В. РассказьІ о математиках. Минск, "Высшая школа", 1966.
24. Цейтен Г. Г. Історія математики за стародавніх часів і у середні віки. К., "Радянська школа", 1956.
25. Цейтен Г. Г. Історія математики в XVI-XVII століттях. К., "Радянська школа", 1956.
26. Юшкевич А. П. История математики в средние века. М., Физматгиз, 1961.
Loading...

 
 

Цікаве