WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Лінійні однорідні рівняння з сталими коефіцієнтами - Реферат

Лінійні однорідні рівняння з сталими коефіцієнтами - Реферат


Реферат на тему:
Лінійні однорідні рівняння з сталими коефіцієнтами
Розглянемо лінійні однорідні диференціальні рівняння з сталими коефіцієнтами
.
Розв'язок будемо шукати у вигляді . Продиференціювавши, одержимо . Підставивши в диференціальне рівняння, отримаємо
.
Скоротивши на , одержимо характеристичне рівняння
.
Алгебраїчне рівняння -го степеня має - коренів. У залежності від їхнього вигляду будемо мати різні розв'язки.
1) Нехай - дійсні і різні. Тоді функції є розв'язками й оскільки всі різні, то - розв'язки лінійно незалежні, тобто фундаментальна система розв'язків. Загальним розв'язком буде лінійна комбінація
2) Нехай маємо комплексно спряжені корені . Їм відповідають розв'язки . Розкладаючи їх по формулі Ейлера, одержимо:
І, як випливає з властивості 4, функції й будуть окремими розв'язками. Таким чином, кореням відповідають два лінійно незалежних розв'язки . Загальним розв'язком, що відповідає цим двом кореням, буде .
3) Нехай - кратний корінь, кратності , тобто
.
a) Розглянемо випадок . Тоді характеристичне рівняння
вироджується в рівняння
.
Диференціальне рівняння, що відповідає цьому характеристичному, запишеться у вигляді . Неважко бачити, що частковими, лінійно незалежними розв'язками цього рівняння, будуть функції . Загальним розв'язком, що відповідає кореню кратності , буде лінійна комбінація цих функцій
.
б) Нехай - корінь дійсний. Зробивши заміну , на підставі властивості 2 лінійних рівнянь після підстановки знову одержимо лінійне однорідне диференціальне рівняння . Причому, оскільки а , то показники зв'язані співвідношенням . Звідси кореню кратності відповідає корінь кратності . Як випливає з попереднього пункту, кореню кратності відповідає загальний розв'язок вигляду .
З огляду на те, що , одержимо, що кореню кратності відповідає розв'язок .
в) Нехай характеристичне рівняння має корені кратності . Проводячи аналогічні викладки одержимо, що їм відповідають лінійно незалежні розв'язки
І загальним розв'язком, що відповідає цим кореням буде
Loading...

 
 

Цікаве