WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Векторна функція скалярного аргументу. Похідна, її геометричний і механічний зміст. Кривизна кривої(пошукова робота) - Реферат

Векторна функція скалярного аргументу. Похідна, її геометричний і механічний зміст. Кривизна кривої(пошукова робота) - Реферат


Пошукова робота на тему:
Векторна функція скалярного аргументу. Похідна, її геометричний і механічний зміст. Кривизна кривої.
План
" Диференціал дуги
" Кривизна плоскої кривої
" Векторна функція скалярного аргументу
" Кривизна плоскої кривої
" Кривизна просторової кривої
" Кручення просторової лінії
" Формули Серре-Френе
1. Диференціал кривої
Поняття довжини кривої буде розглянуто в розділі інтегрального числення. Криві, для яких можна установити поняття довжини, називають в математичному аналізі спрямними.
Умова спрямності кривої для плоскої кривої, заданої параметричними рівняннями , полягає в такому: на спрямному відрізку кривої функції і мусять мати неперервні похідні за параметром : . Аналогічною є умова спрямності просторової кривої, заданої рівняннями ; вона полягає в неперервності похідних .
Для всякої спрямної кривої як просторової, так і плоскої, наслідком її спрямності є така геометрична властивість: границя відношення нескінченно малої дуги кривої до стягуючої її хорди дорівнює одиниці за умови, що хорда стикується в точку.
Якщо довжину малої дуги кривої позначити через , а довжину відповідної хорди - через (рис. 7.4), то
(7.4)
Виходячи саме з цієї властивості, знайдемо вирази для диференціала дуги як плоскої, так і просторової кривої.
На плоскій спрямній кривій, рівняння якої ,
візьмемо дві сусідні точки. та , що
відповідають значенням параметра та (рис. 7.2).
Довжина хорди знаходиться за формулою
(7.5)
Похідна від довжини дуги кривої за параметром :
.
Замінимо його виразом за формулою (7.5):
.
Отже,
. (7.6)
Звідси
. (7.7)
Якщо крива задана рівнянням , то можна прийняти за параметр кривої: .
Диференціал дуги
Якщо крива задана рівнянням в полярних координатах , то за параметр кривої можна прийняти полярний кут .
Диференціюємо по рівності
Маємо
.
Звідси
,
тому
. (7.9)
Рис.7.4 Рис.7.5
Приклади.
1. Знайти диференціал дуги циклоїди
.
Р о з в ' я з о к. .
.
2. Знайти диференціал дуги кардіоїди .
Р о з в ' я з о к. ,
.
Диференціал дуги просторової кривої, заданої параметричними рівняннями , можна знайти аналогічно.
Відміна від попереднього полягає лише в тому, що довжина хорди, яка з'єднує точки просторової кривої і визначається за формулою
.
Формула диференціала дуги просторової кривої
. (7.10)
Приклад. Знайти диференціал дуги гвинтової лінії:
.
Р о з в ' я з о к. .
.
Формулам (7.9) і (7.10) часто надають такого вигляду :
(для плоскої кривої); (7.11 (для просторової кривої); (7.12)
Диференціал дуги плоскої кривої має такий геометричний зміст: він дорівнює довжині відрізка дотичної до кривої (рис.7.5).
2.Кривизна плоскої кривої
Вивчаючи ту чи іншу криву, бачимо, що в різних точках вона має неоднаковий ступінь викривлення. Так, парабола поблизу початку координат більше викривлена, ніж в точках, які знаходяться далі від початку координат. Коло в усіх своїх точках має однакове викривлення. Різні криві також відрізняються одна від одної своїм ступенем викривлення. Коло малого радіуса більше викривлено, ніж коло великого радіуса.
Виникає запитання: що ж брати за міру кривизни кривої в її окремих точках? Щоб відповісти на нього, припустимо, що до кривої в кожній точці можна провести дотичну і що крива є спрямлюваною.
Візьмемо на кривій дві точки і (рис. 7.6) і в цих точках проведемо дотичні прямі. Нехай дотична утворює з додатним напрямом осі кут , а пряма - кут .
Довжину дуги позначимо . Модуль відношення , де - величина кута в радіанах, на який повертається дотична, коли точка переміститься вздовж кривої в точку , називається середньою кривизною дуги .
Рис.7.6
Означення. Границя (якщо вона існує) середньої кривизни дуги даної кривої, коли точка наближається вздовж кривої до точки , називається кривизною кривої в точці і позначається
. (7.13)
Виведемо формулу для обчислення кривизни. Нехай крива задана в декартовій системі координат рівнянням
,
де функція на відрізку має похідні до другого порядку включно.
Скористаємося формулою (7.13). Очевидно, що коли точка , то довжина дуги . Тому формулу (7.13) можна
записати ще так:
. (7.14)
З другого боку, якщо - кут, утворений дотичною до кривої в точці з додатним напрямом осі , то
.
Звідси
.
Тоді
.
Підставляючи в формулу (7.14) значення і значення , дістаємо формулу для кривини кривої:
. (7.15)
З цієї формули легко дістати формулу для кривизни кривої,
коли остання задана параметричними рівняннями . Справді,
,
.
Тоді, підставляючи значення у формулу (7.15), маємо
. (7.16)
Якщо крива задана в полярній системі координат рівнянням , то
. (7.17)
Величину, обернену до кривої в заданій точці, називають радіусом кривизни кривої і позначають через :
. (7.18)
Коло, яке з даною кривою має в даній точці спільну дотичну, спільну кривизну і однаковий напрямок вгнутості, називається колом кривизни, а його центр - центром кривизни кривої в даній точці. Радіус кола кривизни
.
Для всіх плоских кривих (за винятком кола) центри кривизни різні в різних точках кривої. Геометричне місце центрів кривизни даної кривої називається її еволютою, а сама крива по відношенню до еволюти називається евольвентою.
7.5. Векторна функція скалярного аргументу
Простішим способом задання просторової кривої є задання її векторним рівнянням
, (7.19)
де - радіус - вектор точки кривої; - параметр, який визначає положення точки на кривій. Змінний вектор є функція скалярного аргументу ; такі функції в математичному аналізі називають векторними функціями скалярного аргументу.
Розкладемо вектор по осях координат. Рівняння просторової кривої (7.19) набуває вигляду
(7.20)
( - орти координатних осей). Звідси від векторного рівняння кривої можна перейти до її параметричного рівняння
. (7.21)
Це показує, що задання однієї векторної функції від скалярного аргументу рівнозначно заданню трьох скалярних функцій від того самого аргументу.
По відношенню до векторної функції (7.19), яка задає дану криву, сама крива називається годографом цієї векторної функції.
Розглянемо дві близькі точки кривої, заданої рівнянням (7.19): точку , відповідну значенню параметра , і точку , відповідну значенню параметра (рис.7.5).
Радіуси - вектори цих точок:
.
Вектор - називається приростом векторної функції , відповідним приросту її аргументу, і позначається
. (7.22)
Рис.7.7
Векторна функція - неперервна функція аргументу , якщо . Похідну від функції введемо так само, як у випадку скалярної функції: розділимо на і перейдемо до границі при ; якщо ця границя існує,
Loading...

 
 

Цікаве