WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Множина комплексних чисел - Курсова робота

Множина комплексних чисел - Курсова робота

формуле z1 = l = l (cos0 + isin0), z2 = z = r (cos? + isin?), получаем
z-1 = = (cos(0-?) + isin(0-?)),
z-1 = r-1 (cos(-?) + isin(-?)), (29)
откуда |z-1| = r-1, argz-1 = -?, т. е.
|z-1| = |z|-1, argz-1 = -argz.
Таким образом, модуль комплексного числа z-1, обратного числу z, равен обратной величине модуля числа z, а его главное значение аргумента отличается от главного значения аргумента z лишь знаком.
Рассмотрим вопрос о возведении в степень комплексного числа z = r(cos ? + isin ?), заданного в тригонометрической форме. Если n - целое положительное число, то с помощью формулы (25) получаем следующую формулу
zn = (r (cos? + isin?))n = rn (cosn? + isinn?), (30)
откуда |zn| = rn, Arg zn = n?.
Итак, при возведении комплексного числа в натуральную степень модуль возводится в ту же степень, а аргумент умножается на показатель степени.
Формула (30) справедлива и для целых отрицательных показателей. В самом деле, так как z-n = (z-1)n , то достаточно применить формулу (30) к числу z-1, тригонометрическая форма которого определяется формулой (29).
Формулу (30) называют формулой Муавра. В частном случае, при r = 1, из этой формулы получаем
(cos ? + isin ?)n = cos n? + isin n?.
ю;
Извлечение корня n-й степени из комплексного числа
Извлечь корень n-й степени из комплексного числа z - это значит найти такое комплексное число ?, что ?n = z. Представим числа z и ? в три-гонометрической форме: z = r (cos? + isin?), ? = ? (cos? + isin?), где r = |z|, ? = Argz; ? = |?|, ? = ?rg?. Обозначим корень n-й степени из комплексного числа z через , тогда по определению
.
.
Применяя формулу (30), получаем
.
На основании формул (22) и (23) из этого равенства следует, что
?n = r, n? = ? + 2k? (k = 0, ± 1, ± 2, …), откуда
, (k = 0, ± 1, ± 2, …). (31)
Полученные формулы определяют модуль ? и аргумент числа ? - корня степени n из комплексного числа z. Обратно, если дано комплексное число , то при любом целом k,положительном или отрицательном, n-я степень этого числа равна числу z = r(cos? + isin?). Итак,
, (32)
где - арифметическое значение корня из действительного неотрицательного числа, k - любое целое число. Так как k может принимать любые значения (положительные и отрицательные), то может показаться, что корень n-й степени из комплексного числа z имеет бесконечное множество различных значений. На самом деле различных значений будет только n. Полагая
k = 0, 1, 2, … , n - 1, (33)
получаем следующие n значений корня:
,
,
, (34)
……………………………….
.
Докажем, что среди значений ?i (i = 0, 1, ... , n - 1) нет равных между собой. Пусть p и q - любые различные числа из чисел k = 0, 1, 2, ... , n - 1, тогда
.
Поскольку не является целым числом (p < n, q 0) не имеет никаких корней (ни действительных, ни комплексных).
Простейшим примером функции комплексной переменной является линейная функция w = z + c, где с - постоянная (комплексное число). Эта функция осуществляет преобразование плоскости z на плоскость w. Каждой точке z она ставит в соответствие точку w = z + с. Очевидно, от точки z можно перейти к точке w путем сдвига (параллельного переноса) на вектор с, т. е. посредством перемещения точки z по направлению вектора с на расстояние, равное длине этого вектора (рис. 5). Путем подходящего выбора числа с можно получить любой сдвиг. Например, если точку z нужно сдвинуть в положительном направлении оси Ox на две единицы, то надо взять с = 2; точка w = z + 2 будет искомой (рис. 6). Если же точку z нужно сдвинуть в отрицательном направлении оси Oy на три единицы, то берем c = -3i; точка w'= z + (-3i) = z - 3i будет искомой (рис. 6). Итак, функция w = z + c осуществляет преобразование (отображение) плоскости, которое называют сдвигом на вектор с.
Геометрическое преобразование, при котором величины углов между любыми двумя линиями, содержащимися в преобразуемой фигуре, не изменяются, называют конформным преобразованием или конформным отображением. (Под углом между двумя линиями, пересекающимися в некоторой точке, понимают угол между касательными к этим линиям, проведенными в этой точке.) Примерами конформных отображений могут служить сдвиг (параллельный перенос), гомотетия и поворот. Таким образом, можно сказать, что функция w = z+ с осуществляет конформное отображение; это одна из таких функций.
Теория функций комплексной переменной находит широкое применение при решении важных практических задач картографии, электротехники, теплопроводности и др. Во многих вопросах, где речь идет, например, об электрическом потенциале в точках пространства, окружающего заряженный конденсатор, или о температуре внутри нагретого тела, о скоростях частиц жидкости или газа в потоке, движущемся в некотором канале и обтекающем при этом некоторые препятствия, и т. п., нужно уметь находить потенциал, температуру, скорости и т. п. Задачи такого рода могут быть решены без особых затруднений в случае, когда встречающиеся в них тела имеют простую форму (например, в виде плоских пластин или круговых цилиндров). Однако расчеты необходимо уметь производить и во многих других случаях. Например, чтобы сконструировать самолет, надо уметь вычислять скорости частиц в потоке, обтекающем крыло самолета. Разумеется, при полете самолета движутся и частицы воздуха, и само крыло. Однако, опираясь на законы механики, исследование можно свести к случаю, когда крыло неподвижно, а на него набегает и обтекает его поток воздуха. Крыло самолета в поперечном разрезе, (профиль крыла) имеет вид, показанный на рисунке 7. Расчет скоростей производится достаточно просто, когда поперечный разрез обтекаемого тела есть круг (т. е. само тело является круглым цилиндром). Чтобы свести задачу о скоростях частиц потока воздуха, обтекающего крыло самолета, к более простой задаче обтекания круглого цилиндра, достаточно конформно отобразить часть плоскости, заштрихованную на рисунке 7, а (вне крыла), на другую фигуру, заштрихо-ванную на рисунке 7, б (вне круга). Такое отображение осуществляется с помощью некоторой функции комплексной переменной. Знание этой фун-кции позволяет перейти от скоростей в потоке, обтекающем круглый цилиндр, к скоростям в потоке, обтекающем крыло самолета, и тем самым полностью решить поставленную задачу.
Конформное отображение, заданное соответствующей функцией комплексной переменной, аналогичным образом позволяет сводить решение задач о расчете электрического потенциала и температур от случая тел произвольной формы (любого профиля сечения) к простейшим случаям, для которых задачи решается легко.
Русский и советский ученый H. E. Жуковский (1847-1921) успешно применял теорию функций комплексной переменной к решению важных прикладных задач. Так, методами этой теории он доказал основную теорему о подъемной силе крыла самолета. В. И. Ленин назвал H. E. Жуковского "отцом русской авиации". В одном из своих выступлений H. E. Жуковский говорил: "...человек не имеет крыльев и по отношению веса своего тела к весу мускулов он в 72 раза слабее птицы; ...он почти и 800 раз тяжелее воздуха, тогда как птица тяжелее воздуха в 200 раз. Но, я думаю, что он полетит, опираясь не на силу своих мускулов, а на силу своего разума". (Жуковский H.E. Собрание сочинений. - М. - Л.: Гостехиздат, 1950. -T. 7. - С. 16.) С помощью теории функций комплексной переменной H.E. Жуковский решал задачи, относящиеся к вопросам просачивания воды через плотины.
Loading...

 
 

Цікаве