WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Диференціальні рівняння - Курсова робота

Диференціальні рівняння - Курсова робота

фізичнізакони описують деякі співвідношення між величинами, що характеризують певний процес, і швидкістю зміни цих величин. Іншими словами, ці закони виражаються рівностями, в яких е невідомі функції та їх похідні.
У XVIII ст. теорія диференціальних рівнянь відокремилася з математичного аналізу в самостійну математичну дисципліну, її успіхи пов'язані з іменами швейцарського вченого Іоганна Бернуллі (1667-1748), французького математика Жозефа Лагранжа (1736-1813) і особливо Леонарда Ейлера.
Перший період розвитку диференціальних рівнянь був пов'язаний з успішним розв'язуванням деяких важливих прикладних задач, що приводять до диференціальних рівнянь, розробкою методів інтегрування різних типів диференціальних рівнянь і пошуком класів рівнянь, розв'язки яких можна подати у вигляді елементарних функцій або їх первісних. Проте дуже швидко виявилося, що інтегрованих диференціальних рівнянь зовсім небагато. Це привело до розвитку власне теорії диференціальних рівнянь, яка займається розробкою методів, що дають змогу за властивостями диференціального рівняння визначити властивості і характер його розв'язку.
У зв'язку з потребами практики поступово розроблялися і способи наближеного інтегрування диференціальних рівнянь. Ці методи дають зручні алгоритми обчислень з ефективними оцінками точності, а сучасна обчислювальна техніка дає змогу економічно і швидко звести розв'язування кожної такої задачі до числового результату.
2. Основна частина.
I. Рівняння показового росту
Розглянемо диференціальне рівняння вигляду
y'(x) = ky(x) (3)
де k - постійна, а y(x) - шукана функція.
Рівняння (3) називається рівнянням показового росту. Воно має такий зміст: для кожного значення аргументу, швидкість зміни функції пропорційно значенню даної функції.
Для того, щоб знайти розв'язки рівняння (3), можна поступити наступним чином. Нехай y(x)- деякий розв'язок, це означає, що y'(x) - ky(x)= 0 вірно. Помноживши обидві частини рівності на відмінний від 0 множник e-kx, отримаємо вірну рівність
e-kx y'(x) - e-kx ky(x) = 0 (4)
Так як (e-kx y(x))' = e-kx y'(x) - ke-kx y(x), то рівність (4) можна записати так
(e-kx y(x))' = 0,
звідки e-kx y(x) = C, або
y(x)=Cekx, (5)
де C - деяка довільна постійна.
Отже, тільки функції вигляду (5) можуть бути розв'язками рівняння показового росту (3). Безпосередня підстановка в рівняння (3) показує, що при будь-якій постійній C функція (5) є розв'язком рівняння (3). Таким чином, формула (5) визначає множину розв'язків рівняння (3).
Для того, щоб із знайденої множини розв'язків (5) відокремити визначене, потрібно знати константу C. Для цього потрібні додаткові умови - так названі початкові умови; в даному випадку достатньо знати значення шуканої функції при деякому значенні аргументу:
y(x0)=y0 (6)
Підставивши початкову умову (6) в розв'язок рівняння (5), знайдемо y0=Cekx0, звідки C=y0e-kx0. Підставивши це значення C в формулу (5), отримаємо розв'язок рівняння показового росту, яке задовольняє задано ній початковій умові (6):
y(x) = y0ek(x-x0). (7)
Ми бачимо, що постійна C по початковій умові (6) визначається однозначно; ось чому розв'язок (7), який задовольняє даній початковій умові буде єдиним.
Приклад. Розв'язати рівняння y'(x) = 3y(x), якщо y(0) = 2.
Тут k=3, x0=0, y0=2; розв'язання можна записати за формулою (7): y(x)=2e3x. Це буде єдиний розв'язок, задовольняючий заданій початковій умові.
Розглянемо деякі прикладення рівняння (3). При розв'язування задач потрібно спочатку скласти диференціальне рівняння, указати початкову умову, а потім розв'язати рівняння. При складанні рівняння звичайно використовують відомі з курсів фізики та хімії закони.
1. Швидкість прямолінійного руху.
З другого закону Ньютона
(8)
де a - це прискорення руху матеріальної точки маси m, F - результуюча всіх сил діючих на матеріальну точку.
Швидкість руху v(t) і прискорення a(t) являються функціями від часу t, також, як відомо v'(t) = a(t). Помітимо, що дії над векторами, які проведені вздовж однієї прямої, на якій вибрано додатній напрям можна замінити на дії над їхніми проекціями на цю ж саму пряму. Таким чином, у випадку руху матеріальної точки вздовж осі Ox рівність (8) може бути заміненим рівністю
mv'(t) = F, (9)
де через v'(t) і F позначені відповідно проекції векторів і на цю ось. Рівняння (9) описує також і поступальний рух тіла. Такий рух можна розглядати як рух матеріальної точки, яка розташована в центрі мас тіла, під дією сил, прикладених до центру мас.
Задача. Моторний човен рухається в стоячій воді зі швидкістю 5 м/с. На повному ходу її мотор був вимкнутий; через 4 с її швидкість стала рівної 1 м/с. Вважаючи, що сила опору води пропорційна швидкості руху човна, визначити, через скільки секунд після вимкнення мотора швидкість зменшиться до 4 см/с?
Розв'язання. Будемо вважати, що човен рухається прямолінійно. Направимо ось Ох вздовж руху човна. Позначимо через v(t) швидкість руху човна в момент часу t після вимкнення мотора. В момент вимкнення мотора (t=0) швидкість, за умовою, дорівнює 5 м/с, або
v (0) =5. (10)
Це - початкова умова задачі. Складемо диференційне рівняння. Нехай маса човна дорівнює m. За умовою, на рухаючийся човен діє сила F=- k1v(t), де k1>0 (знак мінус вказує на те, що сила опору води направлена проти швидкості руху човна). Підставивши це значення F в рівняння (9) і позначивши m k1 = k, отримаємо диференціальне рівняння
v'(t)=- kv(t), k>0,
аналогічно рівнянню (3). За формулою (7) знайдемо його розв'язок при початковій умові (10):
.
Використовуючи додаткову умову v(4)=1 м/с, знайдемо
ось чому - це закон зміни швидкості руху човна після зупинки мотору. Для відповіді на питання потрібно розв'язати рівняння v(t)=0,04 відносно t. Розв'язавши його отримаємо, що t=12с.
2. Радіоактивний розпад.
З фізики відомо, що кількість атомів радіоактивної речовини, що розпадаються в одиницю часу, складає постійну частину від кількості нерозпавшихся атомів. Для кожного вигляду радіоактивної речовини ця постійна частина своя, вона називається постійної розпаду і позначається через . Іншими словами: швидкість розпаду атомів радіоактивної речовини пропорційна кількості нерозпавшихся атомів, а саме
(11)
Де М (t)- кількість нерозпавшихся радіоактивних атомів речовини в момент часу t, М' (t) - швидкість їхнього розпаду. Бо з плином часу кількість нерозпавшихся атомів зменшується, те похідна М' (t) від'ємна. Рівняння (11) є диференційним рівнянням, аналогічним диференційному рівнянню показового зростання (3). Враховуючи зв'язок між числом ядер і масою радіоактивної речовини, будемо говорити просто про розпад радіоактивної речовини.
Задача. Є М0 радіоактивної речовини. Якщо за 30 років розпадається 50% його, те через скільки часу залишиться 25%
Loading...

 
 

Цікаве