WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Визначені та невласні інтеграли - Реферат

Визначені та невласні інтеграли - Реферат

xcosxdx.
Розв'язування. Нехай u = x, dv = cosxdx , тоді знаходимо du = dx, (взята первісна без сталої С). Застосовуючи до заданого інтеграла формулу (8), одержимо
2.3. Заміна змінної у визначеному інтегралі
Теорема 4. Нехай задано інтеграл , де f (х) неперервна на відрізку [а,b]. Зробимо підстановку х = (t), а t ?, де (t) неперервно диференційована функція на відрізку [ ,?].
Якщо: 1 при зміні t від до ? змінна х змінюється від а до b, тобто (а)= а, (?) = b;
2 складна функція f[ (t)] визначена і неперервна на відрізку [ ,?], тоді має місце рівність
(9)
Доведення. Нехай F(x) деяка первісна для функції f (х), тобто F'(X) = f (х). Розглянемо складну функцію F [ (t)]. Застосовуючи правило диференціювання складної функції, одержимо
Це означає, що функція F[ (t)] є первісною для функції
Звідси, за формулою Ньютона-Лейбніца і рівностей ( ) = a та (?) = b, одержуємо
що й треба було довести.
Приклад 3. Обчислити .
Розв'язування. Нехай t = , тоді t2 = 1 + х х = t2 - 1, dx= 2tdt. Знайдемо межі інтегрування, використовуючи рівність
Отже,
2.4. Методи наближеного обчислення
Для деяких неперервних надінтегральних функцій f (х) первісну не можна виразити елементарними функціями. У цих випадках обчислення визначного інтеграла за формулою Ньютона-Лейбніца неможливе.
Крім того, у практичній діяльності часто досить знати лише наближене значення визначеного інтеграла і знаходити це наближене значення такими методами, які дозволяють використовувати сучасну обчислювальну техніку.
Тому математики багатьох країн розробляють ефективні методи наближеного обчислення визначеного інтеграла.
Найбільш часто використовують три методи - метод прямокутників, метод трапецій та метод парабол (метод Сімпсона).
Якщо відрізок інтегрування [а,b] поділити на n рівних частин довжиною і позначити через середню точку відрізку визначений інтеграл можна обчислити за формулою
(10)
яку називають формулою прямокутників. Чим більше буде n, тим менше буде крок і права частина (10) буде давати більш точне значення інтеграла.
Якщо поділити відрізок інтегрування точками ділення
а = х0 < x1 < х2 < ... < хk < ... < хn-1 < хk = b
на n рівних частин довжиною i позначити значення функції в точках ділення f (хk), тоді визначений інтеграл можна обчислити за формулою
(11)
яку називають формулою трапецій. Легко бачити, що при зростанні n крок зменшується, тому значення інтеграла буде більш точним.
Якщо відрізок інтегрування [а,b] поділити на парну кількість рівних частин (тобто n = 2m) i позначити уk = f (xk), де xk = а + х·k - точки ділення, k = 0, 1, ..., 2m, тоді визначений інтеграл можна обчислити за формулою
(12)
яку називають формулою Сімпсона. Ця формула дає більш точне значення визначеного інтеграла тому, що для її доведення використовується метод парабол, за яким на кожному відрізку [xk-1, xk] три значення функції f (х) входять до інтегральної суми.
4. Застосування визначених інтегралів
4.1. Обчислення площ
Якщо на відрізку [а,b] функція f (х) 0, то згідно з формулою (4), обчислення площі криволінійної трапеції, зображеної на малюнку 1, можна знайти за формулою
Якщо на відрізку [a, b] функція f (х) 0, то криволінійна трапеція, обмежена кривою f (х), відрізком [а, b] та прямими х = а і х = b, буде розташована нижче осі 0х. Визначений інтеграл у цьому випадку буде 0. Але площа є невід'ємною величиною, тому площу криволінійної трапеції, розташованої нижче осі 0х, треба знаходити за формулою
або (f(x) 0)
Якщо f (х) на відрізку [а,b] декілька разів змінює свій знак, то інтеграл по відрізку [а,b] треба розбити на суму інтегралів по часткових відрізках. Інтеграл буде додатним на тих відрізках, де f (х) 0 та від'ємним там, де f (х)<0. Інтеграл по відрізку [а,b] дає різницю площ, що лежать вище та нижче осі 0х (дивись Малюнок 2).
Щоб одержати суму площ (без врахування розташування відносно осі 0х) треба знайти суму абсолютних величин інтегралів по часткових
Мал. 2
відрізках або обчислити інтеграл від абсолютного значення функції, тобто
Приклад 1. Обчислити площу фігури, обмеженої еліпсом
Розв'язування. Із аналітичної геометрії відомо, що цей еліпс має вигляд такий, як на Малюнку 3.
Шукана площа S дорівнює 4S1, де S1 - площа заштрихованої частини еліпса, що розташована у першому квадранті. Отже,
Із рівняння еліпса знаходимо у:
Мал. 3.
Для заштрихованої частини еліпса у 0, тому і ми одержуємо
(1)
Заміна x = sin t дає: dx = cost · dt; t = arcsin x,
tB = arcsin1 = .
Отже,
За формулою (13) одержимо S = 8 · (квадратних одиниць).
Якщо треба обчислити площу фігури, обмеженої кривими y = f1(х), y=f2(х) та прямими х = а, х = b (дивись, наприклад, Малюнок 4), то при f1(х) f2(х) її можна знайти за формулою
(14)
Мал. 4
Приклад 2. Обчислити площу фігури, обмеженої лініями
та
Розв'язування. Спочатку зобразимо фігуру, площу якої треба знайти (Мал. 5). Знайдемо точку перетину цих парабол. Координати точок перетину задовольняють обом рівнянням, тому
Мал. 5
Отже, площа заштрихованої фігури буде
(квадратних одиниць).
4.2. Обчислення довжини дуги кривої.
Нехай крива на площині має рівняння у = f (х). Треба знайти довжину дуги AB цієї кривої, обмежену прямими х = а та х = b (дивись малюнок 6).
Візьмемо на AB точки А, М1, М2, ..., Мn-1, В з абсцисами a, х1, х2, ..., хn-1, b, відповідно, та проведемо хорди
AM1,M1M2,…,Mk-1,Mk,…,Mn-1B,
довжини яких позначимо
Одержимо ламану лінію, вписану в дугу AB. Довжиною ламаної буде
Мал. 6
Означення 1. Довжиною l дуги АВ називають границю, до якої прямує довжина вписаної ламаної, коли довжина її найбільшої частини прямує до нуля, тобто
Теорема 1. Якщо на відрізку [а,b] функція f (х) та її похідна f'(x) неперервні, то довжина дуги кривої у = f (х), обмеженої прямими х = а та х = b, обчислюється за формулою
Доведення. Із Малюнка 6 бачимо, що за теоремою Піфагора
Згідно з теоремою Лагранжа маємо:
де
Тому і довжина вписаної ламаної буде
За умовою теореми f'(х) неперервна, тому і функція також неперервна, а це означає, що існує скінченна границя
що й треба було довести.
Наслідок. Якщо дуга задана параметрична x = (t), y = , , то її довжину знаходять за формулою
4.3. Обчислення об'єму та площі поверхні тіла обертання
Нехай криволінійна трапеція, обмежена кривою у = f (х), відрізком [а, b] осі 0х та прямими х = a та x = b обертається навколо осі 0х (Мал. 7). Тоді об'єм тіла обертання можна знайти за формулою
(17)
а площу поверхні обертання за формулою
(18)
Приклад 3. Обчислити об'єм кулі радіуса R.
Мал. 7
Розв'язування. Кулю можна розглядати як результат обертання півкруга, обмеженого частиною кола х2 + у2 = R2, у 0, навколо осі 0х.
Використовуючи рівність симетричність кола відносно осі 0у та формулу (17), одержимо об'єм V кулі
(кубічних
Loading...

 
 

Цікаве