WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

задач;
- доводити властивості й ознаки паралельності прямих і площин та застосовувати їх до розв'язування задач;
- будувати зображення фігур і на зображеннях виконувати нескладні побудови (елементів фігур, точок перетину прямої та площини, двох площин, переріз куба, тетраедра тощо);
- обчислювати відстані і кути у просторі.
ЗМІСТ ТЕМИ
Основні поняття і аксіоми стереометрії. Техніка виконання найпростіших стереометричних креслень. Паралельні, мимобіжні прямі та прямі, що перетинаються. Напрям у просторі. Визначення кута між мимобіжними прямими.
Паралельність прямих і площин. Паралельне проектування та його властивості. Паралельність площин. Просторова теорема Фалеса.
Перпендикулярність прямих і площин. Перпендикуляр і похила до площини. Перпендикулярні площини. Ортогональне проектування. Відстані у просторі. Кут між прямою і площиною. Двогранні та многогранні кути.
МЕТОДИЧНІ РЕКОМЕНДАЦІЇ
Однією з основних цілей вивчення стереометрії є усвідомлення учнями структури логічної побудови стереометрії. Обов'язковим завданням є розвиток логічного мислення, просторової уяви, абстрактного мислення, а також ілюстрація зв'язку з реальним життям.
Курс стереометрії по відношенню до курсу планіметрії є систематизуючим і узагальнюючим. Багато тем зі стереометрії розглядається за аналогією з відповідними темами з планіметрії (вектори, координати).
У 10 класі відбувається складний процес переорієнтації в свідомості учнів: раніше всі фігури розглядалися на одній площині, тепер і сама площина стає об'єктом, самостійною фігурою і водночас носієм всіх плоских фігур з їх численними властивостями.
Однією з головних особливостей викладання стереометрії повинно бути широке застосування геометричних образів, їх моделей і зображень, залучення учнів до їх виготовлення. Учні повинні навчитися перш за все "бачити" розміщення прямих і площин, відповідні кути і відстані, а вже потім вміти обґрунтувати свої просторові уявлення, спираючись на означення, ознаки, властивості та інші твердження.
Іншим ефективним засобом формування просторових уявлень учнів є використання системи усних вправ. Вони сприяють введенню нових понять і закріпленню вже відомих. Важливе місце треба відвести навчанню зображати просторові фігури на площині, а також виконувати нескладні побудови на зображеннях. Перш за все мається на увазі побудова різних елементів фігур (медіан, середніх ліній та ін.), точок перетину прямої і площини, двох площин. Крім того, достатню увагу треба звернути на побудову перерізів куба, паралелепіпеда, тетраедра, використанню креслень і малюнків у без клітинному зошиті з використанням різних кольорів. Безумовно ці тіла повинні з'явитися якомога раніше, тому що на них зручно ілюструвати усі поняття і твердження.
Особливу увагу необхідно приділити реалізації прикладної спрямованості викладання теми. Головним в цьому є формування чітких уявлень про взаємовідношення властивостей геометричних фігур і відношень між ними і предметами навколишнього середовища.
Корисним є вироблення необхідності обґрунтовувати всі положення і розвиток інтуїції. Постійно необхідно пропонувати учням самостійно працювати на уроці і вдома, в тому числі самостійне вивчення питання з наступним виступом біля дошки.
Труднощі перших уроків стереометрії полягають в тому, що учням необхідно оперувати тільки такими геометричними фігурами, як площина, точка, пряма. Усунення цих труднощів є можливим за рахунок введення многогранників. Підсумкові уроки можна проводити як у формі конференції, так і у формі узагальнюючої лекції.
Конспект уроку
Тема уроку. Виникнення і розвиток стереометрії. Аксіоми та наслідки з них.
Мета уроку: розширити і систематизувати відомості учнів про властивості основних геометричних фігур на площині і в просторі.
Освоївши матеріал уроку учні повинні:
знати:
- аксіоми стереометрії та наслідки з них;
- аксіоматичну побудову геометрії;
вміти:
- застосовувати аксіоми та наслідки з них до розв'язування геометричних і практичних задач.
Хід уроку
І. Вступ
Логічна побудова геометрії
Кожна наука і кожний навчальний предмет у школі оперують певним колом понять, вивчають їх властивості і відношення між ними. Наприклад, фізика вивчає такі поняття, як рух, швидкість, маса, теплота, струм тощо. Граматика оперує поняттями: речення, прикметник, дієслово тощо. Геометрія - це наука про властивості геометричних фігур, і вона має справу з такими поняттями, як геометрична фігура.
- Які ви знаєте види фігур?
Наприклад, трикутник, круг, куб.
- Які відношення між фігурами вивчає геометрія?
Такі відношення між фігурами, як рівність, подібність, паралельність, перпендикулярність.
- Назвіть розглядувані перетворення фігур.
Наприклад, симетрія, поворот, подібність.
- З якими геометричними величинами має справу?
Це довжини відрізка, кола, градусна міра кута, площа, об'єм.
На відміну від інших наук геометрія має специфіку в своїй побудові. Вона побудована дедуктивно.
- Що це означає?
Дедукція (від лат. deduction - виведення) у широкому розумінні - це така форма мислення, коли нова думка виводиться суто логічно з деяких даних думок-посилань. У вужчому розумінні дедукція - це такий умовивід, внаслідок якого одержуються нові знання про предмети або групи предметів на основі вже наявних знань про досліджувані предмети.
- Що вивчає планіметрія? Які її найпростіші фігури?
У планіметрії вивчаються фігури на площині. Найпростішими фігурами в планіметрії є точка і пряма.
Ці два поняття належать до первісних понять, яким умовились не давати означень і використовувати їх при означенні інших понять. Наприклад, серединним перпендикуляром до відрізка називається пряма, яка перпендикулярна до цього відрізка і проходить через його середину. Тут серединний перпендикуляр означається через первісне поняття "пряма".
Потреба в первісних поняттях і їх роль в геометрії саме і пов'язані з дедуктивним характером її побудови. Справді, в геометрії кожне нове поняття, крім первісних, означається або на основі первісних, або на основі раніше означених понять. Розглянемо ще один приклад.
- Що називають квадратом?
Як відомо, квадратомназивають прямокутник, у якого всі сторони рівні.
- Через яку фігуру означається прямокутник?
Прямокутник означається через паралелограм, у якого всі кути прямі.
- Дайте означення паралелограма.
Паралелограм означається через чотирикутник.
Маємо ланцюжок понять, який не може бути нескінченним. Тому виникає потреба невелику кількість понять прийняти без означення (первісні поняття), а через них означати інші.
квадрат
прямокутник
паралелограм
первісні поняття
Крім точки і прямої, первісними поняттями планіметрії є поняття "належати" для точок і прямих, "лежати між" - для трьох точок прямої, "довжина відрізка", "градусна міра кута". Первісні поняття, як і більшість означуваних, походять від
Loading...

 
 

Цікаве