WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

належить
- пряма АВ площині ;
АВ не належить
{А; а} - точка А та пряма а належать площині ; точка А та пряма а визначають площину ;
а ? в = К - прямі а і в перетинаються в точці К;
а ? = N - пряма а і площина перетинаються в точці N;
= АВ - площини і перетинаються по прямій АВ.
Аксіоми стереометрії
Властивості геометричних фігур в стереометрії ми будемо встановлювати шляхом доведення теорем. Але щоб доводити теореми, нам необхідно спиратися на деякі вихідні твердження. Такі твердження називають аксіомами. Оскільки на цих твердженнях ґрунтується доведення теорем стереометрії, то вони отримали назву - група аксіом С.
С1. Яка б не була площина, існують точки, що належать цій площині, і точки, що не належать цій площині.
С2. Якщо дві різні площини мають спільну точку, то вони перетинаються по прямій, що проходить через цю точку.
}
С3. Якщо дві різні прямі мають спільну точку, то через них можна провести площину, і притому тільки одну.
а ? в| {а, в},
- єдина.
Таким чином, група аксіом С, а також ті аксіоми, що ви вивчали у молодших класах у розділі планіметрія, і складають систему аксіом стереометрії.
Зауважимо, що не всі аксіоми планіметрії механічно переносяться до системи аксіом стереометрії. Прикладом тому є аксіома ІV: пряма розбиває площину на дві півплощини. Проілюструємо її на рисунку.
Як бачимо, аксіому ІV слід формулювати тепер таким чином: пряма, що належить площині, розбиває її на дві півплощини.
Також нагадаємо аксіому І планіметрії, оскільки вона знадобиться нам для доведення теорем.
І. Яка б не була пряма, існують точки, що належать цій прямій, і точки, що не належать цій прямій. Через будь-які дві точки можна провести пряму, і притому тільки одну.
Наслідки з аксіом
Теорема 1. Через пряму і точку, що належить даній прямій, можна провести площину, і притому тільки одну.
Дано: пряма АВ, точка С АВ.
Довести: 1) існує {АВ, С};
2) єдина.
Доведення
1) Проведемо пряму АС (аксіома І). АС і АВ різні, оскільки С АВ. За аксіомою С3: АВ і АС визначають площину .
2) Доведемо єдність (методом від супротивного).
Нехай існує ще одна площина , що проходить через АВ і точку С. За аксіомою С2: точки А, В і С повинні лежати на одній прямій. Це суперечить умові, що С АВ. Припущення не вірне.
- Маємо дві точки А і С, яку аксіому планіметрії можна використати?
- Погляньте на малюнок: маємо дві прямі, що перетинаються. Яка аксіома тут працює?
- Яким методом в геометрії доводиться єдність чого-небудь?
- З якою умовою задачі ми отримали протиріччя?
Теорему доведено.
Теорема 2. Якщо дві точки прямої належать площині, то вся пряма належить цій площині.
А |
.
В |
Опорна задача. Якщо дві площини мають дві спільні точки, то вони перетинаються по прямій, що містить ці точки.
Наслідок. Пряма і площина
не перетинаються
(немає спільних точок) перетинаються
(мають одну спільну точку)
(принаймні дві
спільні точки)
Теорема 3. Через три точки, що не лежать на одній прямій, можна провести площину, і притому тільки одну.
Дано: а.
Довести: 1) існує ;
2) - єдина.
Доведення.
1) Проведемо прямі АВ і АС (аксіома І), вони різні, оскільки а. За аксіомою С3: через прямі АВ і АС можна провести площину .
2) Доведемо єдність.
За теоремою 2: . За аксіомою С3 така площина єдина.
Теорему доведено.
Побудова перерізів просторових фігур
Перерізом многогранника називається многокутник, що утворюється при перетині многогранника з площиною.
Щоб будувати прості перерізи, слід вміти будувати:
1) лінію перетину двох площин Для цього знаходять дві точки шуканої прямої і через них проводять пряму
2) точку перетину прямої і площини Для цього знаходять у даній площині пряму, що перетинає дану пряму; точка перетину цих прямих є шуканою. Ці прямі повинні лежати в одній площині
ІІІ. Практичне закріплення нового матеріалу
Задача 1. Дано зображення піраміди SABC. Побудувати переріз піраміди площиною , що проходить через ребро АВ і точку К.
Розв'язання
При розв'язуванні використаємо опорну задачу.
1) К є (SCB),
K є ,
В є (SCB),
B ,
2) К є (SCA),
K ,
А є (SCA),
A ,
3) ?КАВ - шуканий переріз.
Задача 2. Точка М - середина ребра АА1 куба АВСДА1В1С1Д1. побудувати точку перетину прямої Д1М з площиною (АВС).
Розв'язання
1) МД1 (АА1Д1),
АД (АА1Д1),
АД (АА1Д1),
2) АД ? МД1 = К,
3) точка К - шукана.
ІV. Домашнє завдання. Підсумки уроку
Коментарій домашнього завдання: вивчити конспект, № 1, № 7 (за підручником Погорєлова А. В. Геометрія 7-11 кл., Просвещение, 1989), розв'язати задачу.
Задача. Побудувати переріз куба АВСДА1В1С1Д1 площиною, що проходить через точку М - середину ребра АА1 та діагональ В1Д1. Обчислити периметр перерізу, якщо ребро дорівнює 10 см.
Тестові завдання
1. а) Які з наведених фігур можуть бути тільки плоскими, а які - тільки просторовими?
1) круг; 2) куля; 3) квадрат; 4) куб; 5) прямокутний паралелепіпед; 6) ромб; 7) піраміда; 8) циліндр.
б) Наведіть приклади плоских та просторових фігур з навколишнього оточення.
2. Назвіть вершини, ребра та грані многогранників, зображених на малюнках.
а) б)
3. Дано зображення куба АВСДА1В1С1Д1. Вкажіть:
а) точки, що не належать грані АА1ДД1;
б) точки, що належать грані ВВ1С1С.
4. Дано зображення куба АВСДА1В1С1Д1. Вкажіть:
а) пряму перетину грані АА1Д1Д і нижньої основи;
б) пряму перетину грані ВВ1С1С і нижньої основи.
5. а) Столяр за допомогою двох ниток перевіряє, чи буде стійким на рівній підлозі виготовлений стілець, що має чотири ніжки. Як для цього треба натягнути нитки? На яке теоретичне положення спирається така перевірка?
6) Щоб поверхня розпилу чотирикутної балки була плоскою, тесля робить так: позначає на ребрі балки точку А та проводить від неї у потрібному напрямі дві прямі АВ і АС у суміжних площинах поверхні балки; потім скеровує пилку по намічених прямих. Поясніть, чому у такий спосіб одержимо плоску поверхню розпилу.
6. Дано зображення куба АВСДА1В1С1Д1. Доведіть, що можна провести площину:
а) через прямі АС і СС1;
б) через прямі ВД і ДД1.
7. Зобразіть:
а) площину , яка проходить через точки А і В та не проходить черезточку С;
б) площини і , які перетинаються по прямій а.
8. а) Чи можуть дві площини мати тільки одну спільну точку?
б) Чи можуть три площини мати тільки одну спільну точку?
9. Користуючись малюнком, назвіть:
а) точки, що лежать у площинах АДВ і ДВС; АВС і ДСВ;
б) прямі перетину площин АВС і СДА; АВС і ДСВ.
Для класів економічного профілю
Тема. Елементи стереометрії
МЕТА
Мета теми - закласти основи для навчання учнів конструюванню геометричних тіл, дослідженню їх властивостей і вимірюванню геометричних величин,
Loading...

 
 

Цікаве