WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

навчального плану - курси за вибором, факультативи, спецкурси. Факультативне навчання математики має на меті поглиблювати знання учнів, здобуті при вивченні основного курсу, а також розвивати їх логічне мислення, допитливість і кмітливість.
Для учнів 10-11 класів з поглибленим вивченням математики пропонується спеціальний курс "Прикладна математика", автором якого є О. Б. Рудик. Завданнями цього курсу є розвиток логічного мислення учнів та закріплення базових математичних понять на рівні практичного використання.
Справжня диференціація навчання математики можлива тільки за умови забезпечення учням можливості вибору змісту, форм навчання. Першу таку можливість вони мають отримати при розподілі класу на підгрупи для проведення практичних занять з алгебри та початків аналізу і з стереометрії. Кожен учень має обирати два спецкурси з чотирьох-п'яти, що йому пропонують. Важливо, щоб такий вибір здійснювався свідомо. Проведенню занять із спецкурсів має передувати підготовча робота, завданнями якої є надати певну інформацію, допомогти учням узгодити вибір із своїми можливостями та схильностями.
Курси за вибором продовжують моделювати професійну діяльність математиків. Вони мають різне цільове навантаження: розширення знань учнів у тій чи іншій галузі математики, поглиблення їх у традиційних розділах курсу, підготовку до виконання індивідуального завдання творчого характеру. Тобто йдеться про підвищення ерудиції учнів, про прищеплення їм навичок самостійно набувати знання, про перший етап виконання самостійної наукової роботи - ознайомлення з літературними джерелами.
Зміст факультативних занять має бути органічно пов'язаним з основним курсом математики. Так, наприклад, вивчення факультативної теми "Елементи теорії множин і математичної логіки" на початку десятого класу дає можливість більш міцного, а також більш швидкого (завдяки застосуванню символіки і більш високій логічній культурі) засвоєння учнями багатьох наступних розділів курсу і також можливість більш сучасного і наукового тлумачення найважливіших математичних понять (числа, функції, рівняння, фігури тощо) [14; 10; 20].
У класах фізико-математичного профілю навчання може відбуватися за програмою для 10-11 класів з поглибленим вивченням математики, укладачами якої є Бурда М.І., Жалдак М.І., Колесник Т.В., Хмара Т.М., Шкіль М.І., Ядренко М.Й., із розрахунку 8 годин на тиждень [14].
Дедалі більше комп'ютер стає універсальним помічником людини в цивілізованому світі. Використання його в навчальному процесі поряд із допомогою у вирішенні дидактичних завдань активізує дію мотиваційних чинників у створенні позитивного ставлення до навчання.
Ефективність засвоєння знань учнями за умов широкого впровадження засобів нових інформаційних технологій навчання (НІТН) значною мірою залежить від педагогічних програмних засобів (ППЗ), що дають змогу поєднати високі моделюючі та обчислювальні можливості при дослідженні різноманітних математичних об'єктів з унаочненням результатів на всіх етапах процесу навчання.
На сьогодні розроблено значну кількість програмних засобів, орієнтованих на використання при вивченні математики. Це такі програми, як DERIVE, EUREKA, GRAN1, Maple, MathCAD, Mathematika, MathLab, Maxima, Numeri, Reduce та інші.
При вивченні у школі курсу алгебри та початків аналізу, а також деяких розділів геометрії для аналізу функціональних залежностей та статистичних закономірностей доцільно використовувати ППЗ GRAN1 та DERIVE.
Указані програмні засоби призначені перш за все для розв'язування широкого класу задач шляхом моделювання об'єктів, що фігурують в умові задачі.
У рамках змісту шкільної математичної освіти та найпоширеніших методичних систем навчання математики реалізація ідей комп'ютерної підтримки процесу навчання відбувається звичайно шляхом здійснення міжпредметних зв'язків курсів математики та інформатики у формі інтегрованих уроків при вивченні таких, наприклад, тем: графічне розв'язування нерівностей і систем нерівностей; розв'язування лінійних і квадратних рівнянь, нерівностей та їх систем з однією та двома змінними, зокрема графічним методом; дослідження властивостей функцій та побудова і читання їх графіків і по будова графіка функції y = Af(ax + b) + B за графіком функції у = f(х); дослідження статистичних вибірок; відсоткові розрахунки; наближене визначення коренів многочленів і розв'язування рівнянь та нерівностей вищих степенів; границя числових послідовностей та функцій; до-слідження функцій на неперервність; дослідження тригонометричних та обернених тригонометричних функцій; графічне розв'язування три-гонометричних рівнянь і нерівностей; наближене обчислення значень функції; опрацювання статистичних даних: побудова полігону частот. гістограм, обчислення відносних частот різних подій; визначення центра розсіювання відносних частот та величини розсіювання (дисперсії); обчислення визначених інтегралів; визначення площ криволінійних трапецій та об'ємів тіл обертання тощо [14].
Розглянемо деякі методичні зауваження щодо процесу викладання математики у 10-11 класах з математичним ухилом.
1. У процесі викладання курсу "Алгебра та початки аналізу" слід приділити особливу увагу функціональній спрямованості цього курсу. Питання дослідження функцій (пізніше - за допомогою похідної) у тій чи іншій формі слід ставити впродовж усього часу навчання, підкреслюючи при цьому єдність таких понять, як функція, рівняння, нерівність. Наприклад, від учнів необхідно вимагати ясного розуміння того, що розв'язання рівняння f(x) = 0 і нерівності f(x) > 0 є частинними випадками задачі дослідження функції y = f(x) (корені функції та проміжки знакосталості). Поняття функції корисно трактувати з теоретико-множинних позицій. Це дасть можливість більш чіткого визначення багатьох математичних понять, більш тісно пов'яже виучувані математичні властивості об'єктів з життєвою практикою.
2. Перший тиждень навчального року в 10 класі корисно повністю присвятити "Тригонометрії трикутника". Завдяки цьому виникає можливість не тільки провести повторення основних питань геометрії дев'ятирічної школи, але й виявити рівень знань і математичного розвитку учнів. Основним змістом цих уроків є розв'язування комбінованих задач, більш складних, ніж традиційні.
3. Включаючи до програми 10 класу курс "Елементи векторного числення", вчитель має можливість провести побудову всього курсу геометрії на векторній основі. Однак можна піти й іншим шляхом: дати учням можливість з іншої точки зору поглянути на вже вивчене, використати нові методи при розв'язуванні задач і доведенні теорем. Зокрема, у процесі вивчення геометрії учням корисно дозволяти приводити "векторні" доведення різних теорем, дозволяти не викреслювати креслень, якщодоказову теорему можна легко представити "в уяві", заохочувати використання плоского креслення перерізу тіла, достатнього для розв'язання поставленої задачі. Тобто, взагалі кажучи, корисно надавати учням свободу у виборі найраціональніших
Loading...

 
 

Цікаве