WWW.REFERATCENTRAL.ORG.UA - Я ТУТ НАВЧАЮСЬ

... відкритий, безкоштовний архів рефератів, курсових, дипломних робіт

ГоловнаМатематика, Геометрія, Статистика → Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

Особливості вивчення математики в профільних класах у сучасних умовах - Дипломна робота

зберігає логічні зв'язки між вказаними питаннями. Адже для вивчення поняття вектора у просторі і його властивостей використовується паралельність прямих і площин, для введення координат у просторі - перпендикулярність прямих і площин тощо.
9. Однією з головних труднощів викладання теми "Вектори і координати у просторі" є необхідність гармонійно поєднувати повторення матеріалу про вектори і координати на площині з його узагальненням на випадок простору. Це рекомендовано робити паралельно. З одного боку, це забезпечить природність повторення, а з другого створить сприятливі умови для розгляду нового матеріалу.
Курс математики, призначений для природничо-наукового напрямку,
сприяє:
- гармонійному розвитку образного і логічного мислення;
- формуванню чітких уявлень про роль математики в розвитку суспільства, сфери і характер її прикладних можливостей;
повинен:
- забезпечити здобуття найпростіших навичок математичного моделювання [42].
Розглянемо орієнтовне тематичне планування основного курсу математики для 10-11 профільних класів технічного та природничо-наукового напрямків [20]. Його розраховано на 340 годин навчального часу, що складає стандартний базисний навчальний план для класів цього профілю. При складанні робочої програми слід виходити з часу, що виділяється на предмет в даному учбовому закладі. Орієнтовний теоретичний план погоджено з навчальними засобами, орієнтованими на профільне навчання математики.
Цим планом передбачено спільне вивчення геометрії і алгебри та початків аналізу. Такий підхід має певні переваги. Він дозволяє оптимально розподіляти час на вивчення окремих тем, забезпечити природні внутрішньопредметні та міжпредметні зв'язки. Але він має і певні недоліки. Тому можливе паралельне вивчення геометрії і алгебри та початків аналізу в рамках окремих розділів. У цьому випадку порядок вивчення тем відповідних розділів може бути збережено.
З теми "Прямі та площини у просторі" формулюються загальні цілі її вивчення, приводяться вимоги до рівня вивчення теми, її змісту, короткі методичні рекомендації та розробку конспекту уроку, що подано у додатку Б [46].
Основні вимоги до рівня навчання визначають обов'язковий мінімальний рівень підготовки учнів.
Методичні рекомендації нададуть певну допомогу викладачам при з'ясуванні особливостей математичної підготовки для класів даного профілю, а також при виборі різних методичних шляхів і прийомів викладу матеріалу.
Орієнтовний тематичний план
Клас № Назва теми Орієнтовна кількість годин на вивчення матеріалу
10 1. Функції, їх властивості і графіки 30
2. Похідна та її застосування 35
3. Прямі та площини у просторі 40
4. Вектори та координати 20
5. Тригонометричні функції 35
Резерв часу та повторення 10
Загальна кількість годин 170
11 1. Степенева, показникова та логарифмічна функції 30
2. Елементи теорії ймовірностей 20
3. Інтеграл та його застосування 25
4. Геометричні тіла і поверхні 30
5. Об'єми і площі поверхонь геометричних тіл 30
Резерв часу і повторення 35
Загальна кількість годин 170
2.4. КУРС МАТЕМАТИКИ ДЛЯ КЛАСІВ ЕКОНОМІЧНОГО ПРОФІЛЮ
Загальновизнано, що головним засобом забезпечення профільної спрямованості навчання математики є орієнтація основного курсу математики на цей профіль. Різниця має полягати в рівні вивчення тих чи інших питань, шляхах мотивування вивчення окремих питань, системі вправ, рівні обґрунтування фактів, прикладах застосування матеріалу тощо. Цього вимагає ідеологія диференціації і стандартизації освіти. А всі суттєві зміни в змісті навчання забезпечуються курсами на вибір.
З давніх-давен математика і економіка були тісно пов'язані між собою. Насамперед, зародження математики як науки про кількісні відношення і просторові форми реального світу було зумовлене практичними господарчими потребами людей. Перехід до землеробства, виникнення торгівлі і ремесел викликали потребу в проведенні різноманітних підрахунків та вимірювань. Бурхливий розвиток виробництва, мореплавства, астрономії в XVII-XVIII ст. висунув на перший план такі математичні проблеми, як вивчення рухів, процесів, обчислення площ та об'ємів тіл. Саме життя змусило шукати нові методи вивчення таких понять, як швидкість, прискорення. З появою ринкових відносин починається розквіт економічної науки, і відразу в цьому процесі спостерігається використання математики як інструменту економічних досліджень. Особливо активно математичні методи запроваджуються в економічних дослідженнях останні 30-40 років [34; 9].
Сучасна економічна наука досить суттєво використовує математичний апарат, і тому володіння ним давно стало стандартом західної економічної освіти. На даному етапі це стає також надбанням вітчизняної економічної науки. Отже, доцільність та актуальність ознайомлення з основами математичних методів економіки ще на початку процесу економічної освіти сприятиме підвищенню економічних знань, кращому розумінню прикладної значущості математики як науки, більш повному і свідомому оволодінню математичною культурою.
Відразу ж вкажемо на те, що мова йде не про вивчення, наприклад, бухгалтерської справи на уроках математики, а про відбір такого навчального матеріалу, який зміцнить фундамент математичної підготовки школяра, необхідної для успішного оволодіння тією чи іншою економічною професією. Наявність у шкільній математиці деяких прикладних задач, що будуть показувати, як математика може успішно працювати в економіці, сприятиме необхідній профільній орієнтації школяра, а також отриманню ним елементарної профільної грамотності.
У школах і класах економічного напряму передбачається закріплення у учнів початкового інтересу до діяльності, пов'язаною з економікою. Зокрема, засобами математики слід забезпечити формування правильних уявлень про математичне моделювання і навчити його застосуванню до розв'язання найпростіших економічних задач (лінійне програмування, мережене планування, матричний метод тощо).
Важливе значення має навчання використанню елементів обчислювальної математики, у тому числі і наближених методів, до розв'язання прикладних задач [29; 50].
Кожна тема має бути підкріплена прикладними задачами у сфері фінансів, підприємництва та економіки, методи розв'язання яких цілком укладаються саме в традиційну програму шкільного курсу математики. Розв'язування подібних задач з яскраво вираженим прикладним змістом допоможе учням:
- закріпити пройдений матеріал класичного курсу математики;
- сформувати навички у постановці, розв'язуванні й аналізі прикладних задач з математики в галузі економіки;
- сформувати уявлення про етапи розв'язування задач з економічним змістом, про місце і можливості математики в цьому процесі, що, в свою чергу, буде сприяти подоланнюскептицизму учнів щодо корисності математики як одного із засобів вирішення гостро актуальних проблем сучасності.
Доцільне широке використання в навчальному процесі наочних матеріалів (малюнки,
Loading...

 
 

Цікаве